现在,大部分帮助我们生活得更轻松、更舒适的设备都需要机械运动的控制,诸如洗衣机、冰箱、风扇、空调、电动工具和搅拌器等等。所有这些设备都需要消耗能量以产生机械运动,而有效利用能源的途径取决于控制系统、电气机构的设计及控制算法等。我们面临的一个最大挑战就是能源的有效利用。对于这个问题,绝大部分的工作都集中在机械运动控制系统上。因此,许多节能方面的进步是通过改进电机控制技术、结构设计、材料和制造精度来实现的。早在几年前,人们就已经开发出了更高效的控制技术,但执行这类复杂算法和计算所需的CPU 成本较高,不能满足成本敏感市场(如家电市场)的需求。这种情况在最近几年已经发生了变化,成本更低并且具有执行这些复杂的控制算法所需的所有功能的高性能数字信号控制器已经面世。实现节能的另一个开发领域是功率转换。功率转换系统用于将电能从一种形式转换为另一种形式,在此过程中,由于系统的固有能耗、拓扑结构的效率、控制技术以及所采用的电子元器件,必然会产生一定的能量损失。大部分功率转换控制是由模拟电路实现的,但新的节能法规提出的要求越来越高,使得模拟控制的系统越来越难以满足这些要求。2MCU 和DSC 的使用为此开辟了新的前景。现在,借助数字控制技术和由高性能、低成本的数字信号控制器(DSC)实现的复杂数学运算,功率转换系统的效率达到98%是完全可行的。设计中的难点机械运动控制设计中的难点在机械运动控制中会使用多种电机,包括无刷直流电机、有刷换向永磁直流电机、线性电机和步进电机等。系统工程师不但需要选择正确的电机来完成机械动作,还必须选择适当的控制环路结构来满足系统的机械和电子时变响应的要求。控制环的调节通常在电子驱动装置的设计阶段进行。由于不同的电机对电子驱动装置有一系列不同的设计要求,开发人员可能需要处理大量的设计变量。此外,由于电动机的感性特点,它容易造成电磁干扰(EMI)、射频干扰(RFI)和具有破坏性的瞬间高能量,因此,电机本身也使电子驱动装置的设计变得更为复杂。这类电子驱动设备的设计不但要避免电磁干扰(EMI)和射频干扰(RFI),还必须能够承受瞬间过电压和过电流的情形。BLDC 电机已广泛应用于许多领域。BLDC 电机不带换向器,因而比直流电机更可靠。BLDC 电机在许多方面也优于交流感应电机。BLDC 电机通过转子磁体生成旋转磁通,具有很高的效率,因而它们一般用于高端家用电器(如冰箱、洗衣机和洗碗机)、高端水泵、风扇和其它需要较高可靠性和效率的设备中。也由于BLDC电机的结构非常牢固,它们广泛应用于泵、风扇和压缩机等应用中。这些应用的共同特点是它们不需要位置信息,只需要速度信息,而且只需要控制速度。BLDC 电机的使用不需要复杂的控制算法。