比亚迪改良了SiC MOSFET制备方法
2020-03-02 来源:爱集微
前不久比亚迪公司宣布投入巨资布局第三代半导体材料SiC(碳化硅),并整合材料、单晶、外延、芯片、封装等SiC基半导体产业链,致力于降低SiC器件的制造成本,加快其在电动车领域的应用。目前比亚迪公司已成功研发了SiC MOSFET,并期望之后应用于旗下的电动车中,实现SiC基车用功率半导体对硅基IGBT的全面替代,将整车性能在现有基础上提升10%。
在电子领域,MOSFET(场效应晶体管)作为功率开关广泛应用于开关电源、放大器等电子设备中,同时也是硬件设备发热和功率损耗的一大来源。随着新式材料SiC的出现,由于其击穿场强约为Si的10倍,同时具有高热导率、抗辐射等优点,因此可广泛应用于大功率,高温高频半导体器件如MOSFET中。当MOSFET应用SiC材料后,其开关损耗可大幅降低,适用于更高的工作频率,并大大增强高温稳定性,另一方面由于器件本身沟道密度低的特性,可以有效减小器件面积,增加芯片的集成度。然而基于沟槽型SiC的MOSFET普遍存在反型层迁移率低以及栅极氧化层使用寿命短的问题,一定程度限制了SiC的大规模使用。
针对这一缺陷,比亚迪公司早在2017年8月25日就提出一项名为“MOSFET及制备方法、电子设备、车辆”的发明专利(申请号:201710743941.8),申请人为比亚迪股份有限公司。
此专利提出一种基于SiC形成的MOSFET及其制备方法,并应用于电子设备和车辆中,可增加了该电子设备的反应速度以及使用寿命,并提升车辆的使用性能。
图1 MOSFET结构示意图
此专利提出的MOSFET结构如图1所示,包括衬底100、漂移层200、栅极氧化层300、栅极10、源极区400、接触区500、阱区600以及漏极20。其中,漂移层200设置在衬底100的上方;漂移层200中设置有栅槽,栅极氧化层300设置在栅槽的底面以及侧壁上,栅极10填充于栅槽中,且位于栅极氧化层300远离漂移层200的一侧;源极区400以及接触区500设置在漂移层200的顶部,并位于栅槽的一侧,源极区400靠近栅槽设置;阱区600设置在漂移层200中,且位于源极区400以及接触区500的下方;漏极20设置在衬底100的下方。由此结构进行分析,可以提高器件沟道迁移率,减小栅极氧化层的电场。
由于基于SiC的MOSFET中栅极氧化层/SiC界面存在大量界面陷阱,导致栅极氧化层与SiC界面之间有电流传导,造成反型层迁移率低。此外,基于SiC的MOSFET的击穿场强比基于Si的MOSFET的大十倍左右,所以在对器件施加大电压时,对栅极氧化层施加的电场强度也将更大,因此,新式MOSFET开启较慢且沟道迁移率较低,从而使得器件反型层迁移率较低。而当MOSFET关断时,栅极10和漏极20之间会产生高的电压差,并导致栅极氧化层300被破坏,进而影响器件的性能和使用寿命。
在本发明中,以p型MOSFET为例,令阱区的一部分设置在栅槽的下方,从而可以将原本位于栅极氧化层以及漂移区之间的电场,转移至阱区以及漂移区之间形成的PN结的界面处,进而可以降低栅极氧化层附近的电场强度,防止栅极氧化层被击穿。同时,采用倾斜离子注入的方法,可以在栅槽的侧壁两侧、底部同时形成分隔的阱区,使得栅槽以及阱区之间保留有部分n型沟道区,由此形成了沟道电子的积累层,提高了沟道迁移率。
MOSFET的制备方法如图2所示。首先在衬底上通过外延生长形成漂移层,并在漂移层中通过刻蚀工艺设置栅槽,然后在漂移层中以倾斜离子注入的方式形成阱区,并在漂移层顶部设置源极区以及接触区,紧接着在栅槽的底面以及侧壁上形成栅极氧化层,最后在栅槽中设置栅极,在衬底下方设置漏极,形成最终的MOSFET器件。
随着汽车日渐走向智能化、联网化与电动化的趋势,加上5G商用在即,SiC功率半导体市场的商业产值逐渐增加,但也面临着诸多技术上的挑战。比亚迪公司深耕汽车电子领域中,并不断实现技术创新,在此项专利中提出了SiC MOSFET制备方法,增加了该电子设备的反应速度以及使用寿命,同时应用于旗下电动车,提升车辆使用性能。
关于嘉德
深圳市嘉德知识产权服务有限公司由曾在华为等世界500强企业工作多年的知识产权专家、律师、专利代理人组成,熟悉中欧美知识产权法律理论和实务,在全球知识产权申请、布局、诉讼、许可谈判、交易、运营、标准专利协同创造、专利池建设、展会知识产权、跨境电商知识产权、知识产权海关保护等方面拥有丰富的经验。
- SiC模块开启电机驱动器更高功率密度
- 650V碳化硅MOSFET扩展了符合AEC-Q101标准的E3M系列
- 碳化硅推动电动汽车快速充电器的成本和性能优势
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 3起SiC合作!吉利汽车公布新成果
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 直流充电桩中“快准稳”的SiC器件
- 电动汽车或成为碳化硅器件最大的应用市场
- 美光亮相2024年进博会,持续深耕中国市场,引领可持续发展
- 用这个可爱的 DIY 创意提升国庆后的工作效率
- 汇顶助力,一加13新十年首款旗舰全方位实现“样样超Pro”
- 消息称苹果、三星超薄高密度电池均开发失败,iPhone 17 Air、Galaxy S25 Slim手机“变厚”
- BOE独供努比亚和红魔旗舰新品 全新一代屏下显示技术引领行业迈入真全面屏时代
- Qorvo:创新技术引领下一代移动产业
- OPPO与香港理工大学续约合作 升级创新研究中心,拓展AI影像新边界
- 汇顶科技助力小米15全系标配超声波指纹
- 汇顶科技助力iQOO 13打造电竞性能旗舰新体验
- 古尔曼:Vision Pro 将升级芯片,苹果还考虑推出与 iPhone 连接的眼镜
- 消息称苹果、三星超薄高密度电池均开发失败,iPhone 17 Air、Galaxy S25 Slim手机“变厚”
- 美光亮相2024年进博会,持续深耕中国市场,引领可持续发展
- Qorvo:创新技术引领下一代移动产业
- BOE独供努比亚和红魔旗舰新品 全新一代屏下显示技术引领行业迈入真全面屏时代
- OPPO与香港理工大学续约合作 升级创新研究中心,拓展AI影像新边界
- 古尔曼:Vision Pro 将升级芯片,苹果还考虑推出与 iPhone 连接的眼镜
- 汇顶助力,一加13新十年首款旗舰全方位实现“样样超Pro”
- 汇顶科技助力iQOO 13打造电竞性能旗舰新体验
- BOE(京东方)全新一代发光器件赋能iQOO 13 全面引领柔性显示行业性能新高度