基于软件无线电的直扩通信终端设计与仿真
2011-01-21 来源:现代电子技术
0 引言
直接序列扩频通信是扩频通信技术中的一种,具有抗干扰、抗多径衰落、抗阻塞能力强,以及频谱利用率高、保密性好、截获率低、易于组网、进行高精使测距等诸多优点。
本文提出了一种基于软件无线电的直扩系统的设计方案。给出了各项设计参数指标,并对所提出的设计方案进行了仿真验证。
1 系统基本结构
基于软件无线电的直扩通信终端采用对中频进行数字化采样,由软件编程实现信号的扩频、调制、解扩、解调等数字信号处理。本文重点介绍直扩通信终端的中频数字处理的具体实现方案。直扩通信终端的结构框图如图1所示。
信号发射时,信息经过信源、信道编码后,与扩频伪码进行相乘扩频。为了使扩频后的基带信号与后面的DAC的转换速率相匹配,在正交调制之前必须通过内插把低速率的扩频基带信号提升到DAC的转换速率上。内插后的数据通过成形滤波器,以消除码间干扰和高频镜像干扰,内插滤波后的扩频基带信号与载波相乘实现数字调制,之后通过高速DAC转换成中频模拟信号。
信号接收时,中频模拟信号经过高速ADC采样后,与本地载波相乘进行正交下变频至零中频,经抽取滤波后,送入伪码同步环进行伪码捕获跟踪。伪码同步后,再经过信号解扩解调以及相应的信道和信源解码。
2 系统参数设计
直扩通信终端参数约束主要有如下几个方面:
(1)信息数据的传输速率:由于该直扩通信终端主要用于低速率数据通信以及语音通信,而且目前语音编码(如CELP、AMBE编码)后的数据速率一般为 2.4Kb/s,4Kb/s,4.8Kb/s,8Kb/s,9.6Kb/s。因而在信息速率的选择上设定信息速率为8Kb/s,信道编码采用码率为1/2 的卷积编码。因此待扩频的数据速率为16 Kb/s。
(2)扩频伪码类型以及阶数:由于所设计直扩通信终端目前完成的是点对点的通信,因而为了简便起见,在直扩通信终端中采用m序列作为扩频伪码。若m序列的长度太长,则不仅增长了接收机的捕获时间还增加了接收机结构的复杂性。若m序列长度太短,则中频数字化直扩通信终端的抗干扰能力减弱。因而采用折中方式,采用11阶的m序列作为中频数字化直扩通信终端的扩频伪码。
(3)扩频处理增益:扩频增益是直扩通信的一个重要参数,反映了系统抗干扰能力的强弱,是对信噪比改善程度的度量,其定义为接收机输出信噪功率比与接收机的输入信噪功率比之比,即:
其中:BRF为扩频后的带宽;Bb为基带数据带宽;Rc为扩频后的伪码速率;Rb为基带数据速率。在本设计中,为了提高频带利用率,考虑到所允许的最大带宽,这里设计伪码的速率为4.096 Mb/s。因而,可以得到中频数字化直扩通信终端的处理增益为24 dB。
(4)数字调制方式和中频载频:由于DPSK信号采用带判决反馈结构的叉积鉴频环不仅可以消除频偏,而且还可以进行差分解调,从而不需要载波的相位同步,简化了接收机的电路设计。因而采用DPSK作为中频数字化直扩通信终端的数字调制方式。
在中频载频的选择上,采用21.4MHz为中频数字化直扩通信终端的中频载频。
(5)伪码同步电路:对于伪码捕获电路框架,采用非相干串行捕获法。其中的积分清洗滤波器可用累加器或者匹配滤波器来代替。由于直扩通信终端采用先解扩后解调,在解扩之前无法得到精确的载波相位和载频,因此伪码跟踪电路采用非相干超前延时锁相环。
3 仿真结果
由于伪码速率为4.096 Mb/s,故由采样定理可知至少需8.192 MHz的采样频率对伪码采样,考虑到伪码跟踪电路延迟超前锁相环的方便设计,采用16.384 MHz的采样速率对伪码进行采样,即一个伪码采四点。因而信息信号经扩频后得到的基带扩频信号速率为16.384Mb/s,而DAC转换速率设定为81.92 Mb/s,所以为匹配数据速率需要对基带扩频信号进行内插,内插因子为81.92/16.384=5。接收过程为发送过程的反过程,抽取因子等于内插因子也为5。
为了提高频谱利用率,消除码间干扰,需要使用成形滤波器对扩频后的码片进行成形滤波。在中频数字化直扩通信终端设计中为了节省电路资源,把成形滤波器设计为既起码片成形作用,又起内插滤波作用。为了降低滤波器的数据吞吐率,这里采用多项滤波结构。基带扩频信号在内插了5倍后,速率达到了81.92 Mb/s,因而滤波器的采样频率为81.92 MHz。由于采用DBPSK调制,伪码速率为4.096 Mb/s,因调制后的信号3 dB带宽为4.096 MHz,因此滤波器的截止频率只要为2.048 MHz即可,但为了能较好地滤出信号频率,在中频数字化直扩通信终端中,设定滤波器的截止频率为4.096 MHz,从而既满足了内插滤波的要求又满足了码片成形的要求。由于收发过程中都使用了成形滤波器,所以成形滤波器采用平方根升余弦滤波器。
根据所设定的参数,进行了直扩通信终端的扩频调制仿真,发射部分Matlab仿真结果如图2所示。
由图2可知,信息数据经过扩频之后,其频谱在整个频段中得到了扩展,再与载频为21.4 MHz的载波相乘实现数据的上变频(即DPSK调制)。
在接收端,信号经过下变频、抽取后,采用串行捕获方法,伪码捕获同步后,便可进行信号的解扩工作,解扩后的仿真波形如图3所示。
由图3可以看出,信号经过相关解扩处理后,有用信号被解扩,其功率谱集中于信息带宽内。而无用信号通过相关器后,频谱虽然大大的展宽了,但信号在整个频带内的能量不变。
解扩后的信号经过低通滤波,信息解调后得到如图4所示。接收到的扩频信号经过正交下变频、抽取滤波、伪码同步、低通滤波和信息解调后得到的信息数据与所发送的信息数据完全一样。
4 结语
主要讨论了扩频通信中的直扩通信系统的软件无线电实现结构及其参数设计,包括扩频伪码类型、扩频增益、中频选取、伪码同步电路等,并用Matlab仿真了该方案。仿真结果表明方案的可行性。同时表明该设计方案具有体积小,灵活性好,低功耗,扩展性强等优点。
- 国产高精度、高速率ADC芯片,正在崛起
- 贸泽开售用于快速开发精密数据采集系统的 Analog Devices ADAQ7767-1 μModule DAQ解决方案
- 采用电容型PGA,纳芯微推出高精密多通道24/16位Δ-Σ型ADC
- 安森美CEO亮相慕尼黑Electronica展,推出Treo平台
- ADALM2000实验:变压器
- 意法半导体推出灵活、节省空间的车载音频 D类放大器,新增针对汽车应用优化的诊断功能
- 高信噪比MEMS麦克风驱动人工智能交互
- 全差分放大器为精密数据采集信号链提供高压低噪声信号
- 安森美推出业界领先的模拟和混合信号平台
- 集Hi-Fi、智能和USB多通道等特征于一体的微控制器——迎接数字音频新时代