配电系统绝缘故障定位信号发生器的设计与应用
2014-10-13 来源:newmaker
0 引言
在IT系统中,单点接地故障是一种很常见的故障。一旦出现单点接地故障,IT系统就会变为TN-S系统,虽然可以带故障继续运行,但已经失去了IT系统的优点,增加了安全隐患。因此需要实时监测系统的对地绝缘状况,并在监测到对地绝缘故障时,能通过仪表自动定位故障点支路。若没有自动定位功能,一旦出现故障,只能依靠人工对多达数十条、数百条,乃至成千上万条负载支路逐条断电查找,不仅费时费力,更严重破坏了供电连续性。这在某些需要连续供电的特殊场所(如医院手术室等)是不允许的[1]。
基于上述情况,本文设计了一种绝缘故障定位用信号发生器,它装设于IT系统中, 配合绝缘故障定位装置实现绝缘故障定位功能。当IT系统发生绝缘故障时,信号发生器启动并产生定位信号,注入到IT系统与地之间。绝缘故障定位装置通过传感器逐路巡检,当检测到定位信号流经某支路时,便可确定该支路为绝缘故障所在回路。此时,操作人员可有目的性的针对该故障支路进行断电或其它保护操作,不必逐条支路断电进行排查,不仅提高了工作效率,也有效的保障了系统供电的连续性。因此,对电力系统供电的安全性、连续性和可靠性具有极其重要的意义。
1 信号发生原理
信号发生器的工作原理是当IT系统发生单点接地故障时,轮流在系统某根线与大地之间注入定位信号,以便绝缘故障定位仪能在故障支路上监测到定位信号。常采用图1所示发生原理。
考虑以上两种情况后,本文采用脉冲信号作为测试信号。脉冲信号幅度足够大、宽度足够窄,就可实现足够小的有效值、足够大的峰值两个期望目标。从简化设计的角度出发,没必要在信号发生器上直接产生高压脉冲信号,可通过截取IT系统中交流信号的波峰来实现。
对于单相交流IT系统, L1、L2线间电压为AC 220V,其峰值为220V,满足脉冲峰值足够大的要求。为满足有效值足够小的要求,本文依照标准IEC61557-9的“定位信号电压的有效值不允许超过50V”的规定,将电压阈值设为50V。据此,可计算出脉冲宽度(由于脉冲宽度很小,为方便计算,可将此峰值脉冲视为幅度为220的矩形脉冲)为: 当交流电压周期为50Hz时,脉冲宽度为: 当交流电压为60Hz时,脉冲宽度为: 利用单片机的定时器功能,配合光耦,可以精确截取0.4ms的峰值脉冲。由于0.4ms<0.4304ms<0.5165ms,且实际截取的脉冲信号中,除波峰一点外,其余点幅度均小于V,因此其有效值一定会小于设定的阈值(50V),满足脉冲有效值足够小的要求。
2 硬件设计
信号发生器的硬件功能模块主要包括电源模块、中央控制模块、监测模块、信号发生模块、通信模块、指示灯模块。硬件设计原理框图如图2所示。
3 软件设计
信号发生器的控制程序由C语言编写,在程序设计中采用了结构化程序设计方法,便于程序代码的维护、移植和升级。系统上电后,首先完成各模块的初始化和自检,确保系统工作的可靠性;然后确定系统中各部分硬件电路正常后,自动进入正常工作模式。系统主程序流程如图3所示。
(1)数字滤波算法。信号发生器采用数字滤波算法滤除信号中谐波、噪声等干扰,只让有用的信号参与结果运算,从而使计算的结果更加精确可靠。
(2)IT系统交流频率自适应法。因为工作环境的多样性,工作电压不一定就是50Hz,实际中的电压频率可能更高或更低,因此要通过监测模块实时监测IT系统的交流频率。监测模块将比较L1、L2线间的电压,UL1>UL2和UL1<UL2的时间分别记为t1和t2。因为电压比较时存在一定的阈值电压,所以会存在t1>t2或t2>t1的现象。如果t1+t2=20ms(即系统交流频率为50Hz),出现系统对地绝缘故障时,就可在与之间截取一段宽度为0.4ms的脉冲,在与之间截取一段宽度为0.4ms的脉冲。
如图4所示,在系统电压的每个周期,信号发生器截取2次脉冲,分别在L1-L2的正半波波峰处(图4中第二行),以及L1-L2的负半波波峰处(图4中第三行)。若故障点在L1线上,则在L1-L2的负半波波峰处截取的脉冲波形可以在故障支路上表现为正,能被绝缘故障定位仪监测到;若故障点在L2线上,则在L1-L2的正半波波峰处截取的脉冲波形可以在故障支路上表现为正,能被绝缘故障定位仪监测到。
定位信号发生器实物如图5所示,它采用DC 24V供电,面板上有“运行”、“通讯”以及“测试”LED指示灯显示工作状态。
信号发生器已通过型式试验检验,各项指标均达到国家标准的要求,目前已成功应用于某医院重症监护室,如图6所示。通过通信线路,绝缘监测仪、绝缘故障定位仪和信号发生器构成一个局域网络。信号发生器上电后自动进入监测模式,监测IT系统的频率。当绝缘监测仪监测到IT系统发生对地绝缘故障时,通过通信线路,启动信号发生器和绝缘故障定位仪,进入信号发生模式和故障定位模式。
监测到故障支路后,绝缘故障定位仪显示故障支路数,同时通过通信线路,将故障支路信息返回给绝缘监测仪。绝缘监测仪收到信息后立即报警,通过界面显示故障支路数,同时命令信号发生器和绝缘故障定位仪停止发出信号和故障定位,信号发生器再次进入监测模式。
在现场对系统进行调试,模拟绝缘故障100次,绝缘故障定位率为100%,这充分证明了该信号发生器的可行性。
4 结束语
本文设计的信号发生器具有自适应IT系统频率,注入高峰值、低有效值脉冲波形,多系统组网等功能,并可通过面板指示灯显示当前工作状态。该信号发生器符合国家相关标准,配合绝缘监测仪、绝缘故障定位仪,能为IT系统提供安全、可靠的供电解决方案。
参考文献
[1] GB-50054-2011 低压配电系统设计规范[S]
[2] JGJ 16-2008 民用建筑电气设计规范[S].
[3] IEC 61557-9 Electrical safety in low voltage distribution systems up to 1 000 V a.c. and 1 500 V d.c.— Equipment for testing, measuring or monitoring of protective measures —
Part 9: Equipment for insulation fault location in IT systems(end)
进入测试测量查看更多内容>>
在IT系统中,单点接地故障是一种很常见的故障。一旦出现单点接地故障,IT系统就会变为TN-S系统,虽然可以带故障继续运行,但已经失去了IT系统的优点,增加了安全隐患。因此需要实时监测系统的对地绝缘状况,并在监测到对地绝缘故障时,能通过仪表自动定位故障点支路。若没有自动定位功能,一旦出现故障,只能依靠人工对多达数十条、数百条,乃至成千上万条负载支路逐条断电查找,不仅费时费力,更严重破坏了供电连续性。这在某些需要连续供电的特殊场所(如医院手术室等)是不允许的[1]。
基于上述情况,本文设计了一种绝缘故障定位用信号发生器,它装设于IT系统中, 配合绝缘故障定位装置实现绝缘故障定位功能。当IT系统发生绝缘故障时,信号发生器启动并产生定位信号,注入到IT系统与地之间。绝缘故障定位装置通过传感器逐路巡检,当检测到定位信号流经某支路时,便可确定该支路为绝缘故障所在回路。此时,操作人员可有目的性的针对该故障支路进行断电或其它保护操作,不必逐条支路断电进行排查,不仅提高了工作效率,也有效的保障了系统供电的连续性。因此,对电力系统供电的安全性、连续性和可靠性具有极其重要的意义。
1 信号发生原理
信号发生器的工作原理是当IT系统发生单点接地故障时,轮流在系统某根线与大地之间注入定位信号,以便绝缘故障定位仪能在故障支路上监测到定位信号。常采用图1所示发生原理。
图1 信号发生器的发生原理
考虑以上两种情况后,本文采用脉冲信号作为测试信号。脉冲信号幅度足够大、宽度足够窄,就可实现足够小的有效值、足够大的峰值两个期望目标。从简化设计的角度出发,没必要在信号发生器上直接产生高压脉冲信号,可通过截取IT系统中交流信号的波峰来实现。
对于单相交流IT系统, L1、L2线间电压为AC 220V,其峰值为220V,满足脉冲峰值足够大的要求。为满足有效值足够小的要求,本文依照标准IEC61557-9的“定位信号电压的有效值不允许超过50V”的规定,将电压阈值设为50V。据此,可计算出脉冲宽度(由于脉冲宽度很小,为方便计算,可将此峰值脉冲视为幅度为220的矩形脉冲)为: 当交流电压周期为50Hz时,脉冲宽度为: 当交流电压为60Hz时,脉冲宽度为: 利用单片机的定时器功能,配合光耦,可以精确截取0.4ms的峰值脉冲。由于0.4ms<0.4304ms<0.5165ms,且实际截取的脉冲信号中,除波峰一点外,其余点幅度均小于V,因此其有效值一定会小于设定的阈值(50V),满足脉冲有效值足够小的要求。
2 硬件设计
信号发生器的硬件功能模块主要包括电源模块、中央控制模块、监测模块、信号发生模块、通信模块、指示灯模块。硬件设计原理框图如图2所示。
图2 硬件设计原理框图
3 软件设计
信号发生器的控制程序由C语言编写,在程序设计中采用了结构化程序设计方法,便于程序代码的维护、移植和升级。系统上电后,首先完成各模块的初始化和自检,确保系统工作的可靠性;然后确定系统中各部分硬件电路正常后,自动进入正常工作模式。系统主程序流程如图3所示。
图3 软件流程图
(1)数字滤波算法。信号发生器采用数字滤波算法滤除信号中谐波、噪声等干扰,只让有用的信号参与结果运算,从而使计算的结果更加精确可靠。
(2)IT系统交流频率自适应法。因为工作环境的多样性,工作电压不一定就是50Hz,实际中的电压频率可能更高或更低,因此要通过监测模块实时监测IT系统的交流频率。监测模块将比较L1、L2线间的电压,UL1>UL2和UL1<UL2的时间分别记为t1和t2。因为电压比较时存在一定的阈值电压,所以会存在t1>t2或t2>t1的现象。如果t1+t2=20ms(即系统交流频率为50Hz),出现系统对地绝缘故障时,就可在与之间截取一段宽度为0.4ms的脉冲,在与之间截取一段宽度为0.4ms的脉冲。
如图4所示,在系统电压的每个周期,信号发生器截取2次脉冲,分别在L1-L2的正半波波峰处(图4中第二行),以及L1-L2的负半波波峰处(图4中第三行)。若故障点在L1线上,则在L1-L2的负半波波峰处截取的脉冲波形可以在故障支路上表现为正,能被绝缘故障定位仪监测到;若故障点在L2线上,则在L1-L2的正半波波峰处截取的脉冲波形可以在故障支路上表现为正,能被绝缘故障定位仪监测到。
图4 L1、L2间电压及截取的脉冲电压
定位信号发生器实物如图5所示,它采用DC 24V供电,面板上有“运行”、“通讯”以及“测试”LED指示灯显示工作状态。
图5 某医院重症监护室IT系统应用图
信号发生器已通过型式试验检验,各项指标均达到国家标准的要求,目前已成功应用于某医院重症监护室,如图6所示。通过通信线路,绝缘监测仪、绝缘故障定位仪和信号发生器构成一个局域网络。信号发生器上电后自动进入监测模式,监测IT系统的频率。当绝缘监测仪监测到IT系统发生对地绝缘故障时,通过通信线路,启动信号发生器和绝缘故障定位仪,进入信号发生模式和故障定位模式。
图6 信号发生器产生的波形
图7 绝缘故障定位仪监测到的波形
监测到故障支路后,绝缘故障定位仪显示故障支路数,同时通过通信线路,将故障支路信息返回给绝缘监测仪。绝缘监测仪收到信息后立即报警,通过界面显示故障支路数,同时命令信号发生器和绝缘故障定位仪停止发出信号和故障定位,信号发生器再次进入监测模式。
在现场对系统进行调试,模拟绝缘故障100次,绝缘故障定位率为100%,这充分证明了该信号发生器的可行性。
4 结束语
本文设计的信号发生器具有自适应IT系统频率,注入高峰值、低有效值脉冲波形,多系统组网等功能,并可通过面板指示灯显示当前工作状态。该信号发生器符合国家相关标准,配合绝缘监测仪、绝缘故障定位仪,能为IT系统提供安全、可靠的供电解决方案。
参考文献
[1] GB-50054-2011 低压配电系统设计规范[S]
[2] JGJ 16-2008 民用建筑电气设计规范[S].
[3] IEC 61557-9 Electrical safety in low voltage distribution systems up to 1 000 V a.c. and 1 500 V d.c.— Equipment for testing, measuring or monitoring of protective measures —
Part 9: Equipment for insulation fault location in IT systems(end)
上一篇:ZDS2022示波器全球首发
下一篇:示波器探头浅谈
相关文章
- 关于GD32开发平台现已支持Huawei LiteOS操作系统的介绍和分享
- 基于Clarity CVC-HFK免提开发平台的车载信号处理与音频系统
- 内核移植和文件系统制作(2):linux内核最小系统和initramfs文件系统
- Android + Mini2440 无线网络视频监控系统 SQLite的移植
- 全新IT2700多通道源载模组系统发布——开启电源测试新纪元
- 全球第六大 IT 服务提供商富士通遭黑客攻击:多个系统被感染、客户敏感数据泄露
- 标致汽车宣布i-Cockpit车机系统将集成ChatGPT,让语音助手更智能
- 在MT2712实现基于VOsySmonitor的车载信息娱乐和实时操作系统
- 埃赛力达推出用于荧光显微镜的X-Cite XYLIS II广谱LED照明系统
- 主线科技 AiTrucker L4级自动驾驶系统技术及应用