网络通信
返回首页

基于ZigBee无线传输的电子听诊器

2011-07-30

  本文对传统听诊器进行改造,引入基于ZigBee协议的无线电子通信技术,设计出一款可以对人体心音数据进行实时采集、处理和无线收发的电子听诊器,从而以较低的功耗扩大了听诊范围,降低了医生在听诊时被病人传染的机率。

  1 ZigBee协议的优势

  ZigBee是一种近距离、低复杂度、低数据速率、低成本的双向无线通信技术,工作在2.4 GHz ISM免费频段,主要适合自动控制、传感、监控和远程控制等领域,同时也支持地理定位功能。ZigBee联盟在制定ZigBee标准时,采用了IEEE 802.15.4作为其物理层和媒体接入层规范。在其基础之上,ZigBee联盟制定了数据链路层(DLL)、网络层(NWK)和应用编程接口(API)规范。同蓝牙技术相比较,ZigBee技术在功耗、传输距离和设备成本等方面均存在着明显的优势。ZigBee与蓝牙传输协议各参数比较如表1所列。

  

 

  2 系统整体设计思路

  无线电子听诊器的结构框图如图1所示。采用麦克风来获取人体心音信号,并转换成模拟的电信号。经过放大和滤波处理后,信号送入到主控模块进行A/D转换,将模拟信号转换成数字信号。主控模块通过无线收发模块将转换完成的数字信号并发送出去。电源模块则负责为

  各个模块供电。接收端采用深圳无线龙通信科技有限公司设计的C51RF~CC2530-PK无线ZigBee网络开发平台。它通过USB同上位机相连,向上位机传递其接收到的数据,用于显示和分析处理。系统分为软件和硬件两部分:硬件部分包括信号调理、数据采集处理、无线传输、无线收发和电源模块;软件部分包括Firmware中的软件和上位机软件。

  

3 系统各硬件模块的实现

  3.1 心音采集模块

  心音是在心动周期内,由于心机收缩和舒张、瓣膜启闭、血流冲击心室壁和大动脉等因素引起的机械振动。通常有效的人体心音信号频率为0~600 Hz,由于心音信号比较微弱,周围环境干扰以及其他各种人为因素常常会带来大量的干扰杂音,直接用麦克风采集心音效果并不好。为了更好地隔离杂音干扰,增强采集端心音强度,加入了心音听诊头,如图2所示。

  

 

  采用MEMS麦克风对心音信号进行采集,同传统的驻极性体麦克风相比,MEMS麦克风体积小、集成度高,且灵敏度为-42 dB,同驻极体麦克风大致相当。

  3.2 增益和滤波模块

  实验发现麦克风采集到的心音信号幅值通常为30~60 mv,范围小不便于观察,需要对采集到的心音数据进行电压提升和放大处理。另外,心音信号的有效频率为0~600 Hz,为了消除高频信号的干扰,引入了截止频率为600 Hz的有源低通滤波器。由于信号放大和滤波单元均用到了运算放大器,为了减小电路占用面积,设计中分别采用一级运算放大器和一级有源滤波器。信号调理模块电路图如图3所示。集成运放采用ADI公司生产的AD8607,它包含有2个独立的低功耗、低噪声CMOS运算放大器AD8603,供电电压为1.8~6 V,工作电流不超过50μA,最大输入偏置电流为1pA。

  

 

  经过电路调理后,可以在示波器上观测到可识别性较高的心音波形,如图4所示。

  

 

  3.3 无线传输模块

  图5为无线传输模块电路图。无线传输模块由TI公司生产的新一代2.4 G无线收发芯片CC2530为核心,芯片集成了增强型8051内核,内部采用流水线结构,指令周期短。芯片具有256KB的Flash,低功耗设计使得芯片在收发状态下的功耗都比较低,能够保证长时间工作。6mm× 6mm的封装使芯片及外围电路占用的空间大大减小,非常适合对结构要求紧凑的设计需求。芯片的工作电压为2~3.6 V,最大发送电流(发送功率为1 dBm时)为29 mA。CC2530内部包含有12位的8通道分辨率可配置的A/D转换器,设计中采用该转换器对调理之后的心音信号进行A/D转换,转换速率为1.2ksps,采样精度达到±4.6LSB。

  

3.4 电源模块

  为了保证听诊器的正常运行,设计了3种方式来供电。在使用JTAG接口对CC2530进行程序调试时,利用JTAG的3.3 V电源引脚为电路供电。该供电方法的缺点是通过JTAG接口提供的电压稳定性不高,纹波稍大,对心音信号有一定的干扰,而且电路工作范围受到引线的限制。另一种方法参考了诺基亚手机充电接口的设计思路,通过USB充电线为电路供电。诺基亚充电线的空载输出电压为6 V,需要降压才能够为电路供电。考虑到采用这种供电方式电路依然不能摆脱引线的束缚,使用体积小、容量大的充电电池是一种比较理想的选择。设计中采用可充电纽扣电池LIR2450,该电池的理论参数如表2所列。

  

 

  3.6 V的标称电压仍需要降压才能够为电路供电,因此引入了3.3 V输出的线性稳压芯片ADP122来解决这一问题。ADP122拥有300 mA的最大输出电流,电压输出偏差为±1%,稳定性高,给电路带来的干扰小。综上考虑,决定采用诺基亚USB充电线通过USB电池充电管理芯片MAX8808为锂电池充电,同时也为电路供电,在锂电池电量充满后MAX8808会自动停止充电。拔掉充电线后由锂电池来供电。图6为供电模块电路图。

  

 

  4 电子听诊器实物及其运行状况

  通过电路制版、芯片焊接、封装设计、电路编程调试等流程完成了无线电子听诊器模块的制作工作,电路板如图7所示。MEMS麦克风单独置于电路板的背面,电路板大小为37 mm×22 mm,最厚处为4.5 mm,占用空间小,稳定性高。图8为实测心音信号在上位机软件上的显示效果图。

  结语

  本系统采用了集成化、紧凑性设计,功耗低,电路供电方式多样化,能够满足测试和实际应用的要求。整个系统全部采用贴片元件,体积小、成本低,以较高的准确性实现了点对点通信,完成了心音信号的无线传输。

 

进入网络通信查看更多内容>>
相关视频
  • 微波毫米波电路分析与设计

  • 天线原理与基本参数

  • Digi-Key: Follow Me 系列(1) 直播回放及答疑记录

  • 无线感测网络

  • 微波五讲

  • 天线原理 哈工大 林澍

最新器件
精选电路图
  • 简洁的过零调功器电路设计与分析

  • 单稳态控制电路设计与分析

  • 光控电路设计与分析

  • 永不缺相启动运行的电动机控制电路

  • 基于CA3193的热电偶放大器电路

  • 基于TDA1554的立体声放大器电路

    相关电子头条文章