数字正交上变频器AD9857在高频雷达系统中的应用
2006-05-07 来源:电子技术应用
摘要:介绍了数字正交上变频器AD9857结构、原理、功能,并给出了其在高频雷达系统发射通道中的具体应用。
关键词:上变频 AD9857 并口
随着数字技术的发展、短波通信的实现已从模拟电路向数字电路转变,由中小规模向超大规模集成电路转变,进而向软件无线电(Software Radio)的概念发展。数字化是现代通信发展的总趋势。因此,与短波通信联系紧密的高频雷达也必然要向数字化方向发展。一般来讲,在雷达设备或系统中,通用发射通道的电路有两种实现方法:一种是传统的锁相环(PLL)电路;另一种就是直接数字合成(DDS)。与锁相环相比,DDS具有频率分辨率高、频率变化速度快、线性相位变化、易于数字控制等优点,因而发射通道核心部分采用基于DDS的14位正交数字上变频器AD9857。
顾名思义,正交数字上变频器AD9857在雷达系统中起上变频的作用,即将基带数字信号调制到载频,输出调制后的模拟信号。
1 AD9857的结构和工作原理
AD9857的内部结构如图1所示。主要包括输入数据组合、CIC与反CIC滤波器、固定插值滤波器、正交调制器、DDS核心、反SINC滤波器、输出幅度乘法器、14位DAC。
1.1 内部结构
输入数据转换
将串行输入的基带数字信号转换成14位并行数据。由于基带信号的I/Q分量是交替输入的,所以必须保证I/Q分量与输入时钟PCLK的同步性,使其能转换成两路并行的I/Q数据流,送往下一级电路。
CIC与反CIC滤波器
CIC(内插级联积分梳状滤波器)为一个编程过采样滤波器,过采样率为:2X~63X。
由于CIC具有低通特性,所以在其前端有一个反CIC滤波器来对此加以补偿。
固定插值滤波器
固定插值滤波器由两个半带滤波器HB实现。它用来将输入数据过采样4X。另外,和CIC一样,它也具有低通特性。
用以将基带数字信号的频谱调制到所需的载频上(上变频)。DDS(直接数字合成)产生正交调制所需要的正弦、余弦两路数字载波,其频率可由相应频率控制字控制。CIC输出的I/O数据分别与这两路数字载波相乘,然后再相加或相减,便得到调制后的数字中频信号。
DDS核心
用于产生sin/cos载波参数考信号,载频(fout)与频率控制字(FTWORD)和系统时钟(SYSCLK)的关系如下:
fout=(FTWORD* SYSCLK)/2 32
其中,fout、SYSCLK的单位是Hz,FTWORD是从0到2,147,483,647(2 32-1)的十进制数。
反SINC滤波器
由于14位DAC的零阶保持效应,其输出信号的频谱会被SINC包络所加权。反SINC滤波器对输入数据进行预处理,以抵消SINC包络造成的失真。
输出幅度乘法器
用于对最终输出信号幅度的调整,其值由相应可编程寄存器决定,范围是:0~1.9921875。
14位DAC
用于将数字信号转换成模拟信号。数模转换过程会在n*SYCLK±FCARRIER(n=1,2,3)处产生干扰信号,须外接一个RLC滤波器加以消除。
1.2 工作原理
输入AD9857的是14位并行数据。这14位数据由I/Q交替输入。AD9857只完成数字信号的正交上变频调制,对数字信号的编码、插值、脉冲整形等过程须在其送到AD9857前完成。
AD9857将交替输入的I/Q信号分成两路。从输入到信号分离器一直到正交调制器,AD9857内的数据流都是两路I/Q信号。
AD9857内的系统时钟信号SCLK提供了其内部的所有时序。CIC输出的I/Q数据的采样率与DDS数字载波的采样率相同,也就是AD9857的系统时钟频率SYSCLK。所以调制后的信号实际上是一组采样率为SYSCLK的数据流。
1.3 工作模式
AD9857具有三种工作模式:正交调制器模式、单频输出模式、插值DAC模式。当工作在正交调制器模式时,DDS核心提供一个正交的本振信号(sin&cos)到正交调制器,在那里分别与I&Q数据相乘、相加,产品一个正交调制的数据流。所有这些都在数字域内发生,仅当数字的数据流加到14位DAC输出时才变成正交调制的模拟输出信号;当工作在单频输出模式时,AD9857相当于一个频率源,14位数据信号并不加到AD9857。内部DDS核心在频率控制字的控制下产生一个单频信号。该信号经过反向SINC滤波器和输出幅度控制器后加到14位DAC输出。当工作在插值DAC模式时,14位数据输出后仍是基带信号,即没有调制。对信号进行过采样操作并保持原始信号的频谱不变时,用该模式。
2 AD9857的引脚描述和技术特性
AD9857是基于CMOS的超大规模集成芯片。共有80个引脚,各引脚的说明如表1所示。
表1 AD9857引脚
引脚 | 助记符 | I/O | 引脚 | 助记符 | I/O |
20~14,7~1 | D0~D6,D7~D13 | I | 45 | IOUT | O |
8~10,31~33,73~75 | DVDD | 46 | IOUT | O | |
11~13,28~30,70~72,76~78 | DGND | 49 | DAC_BP | ||
21 | PS1 | I | 50 | DAC_RESET | I |
22 | PS0 | I | 55 | PLL_FILTER | O |
23 | CS | I | 60 | DIFFCLKEN | I |
24 | SCLK | I | 62 | REFCLK | I |
25 | SDIO | I/O | 63 | REFCLK | I |
26 | SDO | O | 66 | DPD | I |
27 | SYNCIO | I | 67 | RESET | I |
34,41,51,57 | NC | 68 | PLL_LOCK | O | |
35,37,38,43,48,54,58,65, | AVDD | 69 | CIC_OVRFL | O | |
36,3910,42,44,47,53,56,59,61,65 | AGND | 79 | PDCLK/FUD | I/O | |
80 | TxENABLE | I |
AD9857的技术特性:
200MHz的内部时钟率
14位的数据总线
极好的动态特性(80dB SFDR @ 65MHz(±100kHz模拟输出)
4~20倍PLL可编程参考时钟
内置32位正交DDS
FSK兼容
8位输出幅度控制
单引脚掉电功能
4个可编程的通过引脚可选的信号模式
反SINC滤波器
简单的控制接口:10MHz串行,2或3线SPI兼容
3.3V供电
单端或差分输入的参考时钟
可工作温度范围:-40~+85℃
其封装是80引脚的LQFP表面封装。
3 计算机并口对AD9857的控制
为便于计算机对AD9857进行实时控制,采用计算机并口(Parallel Port)作为AD9857与计算机的接口。
3.1 计算机并口的结构
并行端口又叫并行打印机适配器、Centronics适配器、Centronics端口,或简称并口。在通用计算机上,并口的输出连接在一个25针D型连接口上。实际的并口使用了17个信号,分别包括在3个内部端口中。它们是:DATA端口(输入输出端口,包括8个数据信号);STATUS端口(输入端口,包括5个状态信号);CONTROL端口(输出端口,包括4个控制信号)。并口结构如表2所示。
表2 并口结构
DB-25 | Centronic | 寄存器 | I/O | 数据位 |
1 | 1 | Control | out | C0 |
2~9 | 2~9 | Data | out | D1~D8 |
10 | 10 | Status | in | S6 |
11 | 11 | Status | in | S7 |
12 | 12 | Status | in | S5 |
13 | 13 | Status | in | S4 |
14 | 14 | Control | out | C1 |
15 | 32 | Status | in | S3 |
16 | 31 | Control | out | C2 |
17 | 36 | Control | out | C3 |
18~25 | 19、21、23、25、27、29、30、34 | GROUND |
3.2 计算机并口与AD9857的接口
硬件方面,用一根通用打印机并口线将计算机并口与AD9857电路连接起来,连接方法如表3所示。
表3 AD9857与并口的连接
并口引脚 | AD9857引脚 | 并口寄存器 |
p1 | LtchData | c0 |
p2 | Sclk(pin24) | d0 |
p3 | SDIO(pin25) | d1 |
p4 | Cs(pin23) | d2 |
p5 | Ps0(pin22) | d3 |
p6 | Ps1(pin21) | d4 |
p7 | Reset(pin21) | d5 |
p8 | Reset(pin67) | d6 |
p9 | SYNCIO(pin27) | d7 |
p14 | DIG_PWOR_Down(pin66) | c1 |
p31 | FUD(pin79) | c2 |
p32 | Readback_Enable | s3 |
p36 | =1,disable FUD input,modulation =0,enable FUd input,sigle tone |
c3 |
软件方面,采用VC6.0语言。分别编写了一个类对并口和AD9857进行控制,通过对这些类的调用分别写出各种实用程序。这样增强了程序的实用性,也便于计算机对并口进行实时控制。
4 AD9857在高频雷达系统发射通道中的应用
4.1 发射通道的工作原理
AD9857接收VXI3250(接收机)输出的参考频率作为其参考时钟;接收计算并口输出的控制信号;输出时序控制信号到WT6701(通用DSP芯片TMS320c6701板卡),同时接收WT6701输出的基带数字信号,生成已调连续射频信号;将射频信号输出给发射机。见图2。在发射通道中,AD9857工作在正交调制模式。
4.2 实验结果
以下是AD9857对伪随机信号调制后的频谱,即将伪随机信号调制到30MHz载频后的频谱,见图3、图4。AD9857参数设置如下:外接40MHz参考时钟,参考时钟因子为5,CIC插值率为32。
- AI大模型时代,GPU高速互连如何正确破局
- 专访Silicon Labs:深度探讨蓝牙6.0的未来发展趋势
- 恩智浦发布S32J系列安全以太网交换机支持可扩展汽车网络,拓展CoreRide平台
- Wi-Fi 8规范已在路上:2.4/5/6GHz三频工作
- 恩智浦FRDM平台助力无线连接
- Microchip借助NVIDIA Holoscan平台加速实时边缘AI部署
- 英飞凌推出新型高性能微控制器AURIX™ TC4Dx
- 智能无处不在:安谋科技“周易”NPU开启端侧AI新时代
- 高通推出其首款 RISC-V 架构可编程连接模组 QCC74xM,支持 Wi-Fi 6 等协议
- Rambus宣布推出业界首款HBM4控制器IP,加速下一代AI工作负载