一种混合动力电池监测模块的设计实现
2012-05-28 来源:电源网
分布式电池监测系统具有应用广泛,可扩展的优点; CAN总线具有传输速率高、可靠性好的优点,将二者结合应用,典型电池监测与管理系统结构如图1所示。
其中远程数据采集单元即电池监测模块。
监测模块的功能定义
功能实现的前提是在不影响或对电池性能影响小到可以忽略的基础上实现,离开这个前提则监测模块的设计会失去意义,因为在实际应用中往往是多个电池串连在一起应用,一个电池的失效必然导致整个电池包出问题。
监测模块将在上述前提下实现下列功能:
接受上层控制器的控制;
实现电池数据的采集,准确反应电池的物理参数,如电压,温度;
将采集到的数据传送给上层控制器,实现数据共享。
监测模块要达到的物理性能
在采样速率>10khz 的情况下,
电压采样
电压采集精度25℃优于0.5%, -40℃~85℃优于1%。
温度采样
温度采集精度±2℃,-40℃~85℃。
监测模块系统结构
如图2所示,虚线框部分为监测模块基本结构。
基本结构共由三大部分组成:低压回路、隔离电路、高压回路。它们各自又由三部分组成:
低压回路包括:信号处理与转换电路,作用是处理来自整车的控制信号,典型如点火信号等,可以根据不同的应用要求设计;电源电路和主芯片电路,作用是给低压回路供电,同时实现监测模块的控制逻辑与数据处理;通讯电路,作用是与上层控制器以及下层的数据采集部分进行通讯,典型上层通讯电路采用CAN协议通讯,下层电路采用SCISPI,I2C等。
隔离电路包括:控制隔离电路,作用是实现低压对高压控制电路的隔离;电源隔离电路,作用是实现低压电源到高压电源的隔离控制;通讯隔离电路,作用是实现高、低压通讯电路电平的隔离并保证正常通讯。
高压回路包括:信号处理,作用是将电池包的电池模块信号、温度传感器以及其他信号转化为可以直接采样的电信号;电源和采样电路,作用是为高压系统工作提供电源,同时对处理后的信号进行采样处理,将模拟信号转化为电压信号;通讯电路,作用为将处理好的数字信号发送出去,同时接受低压回路的控制指令。
设计实现
以仅采集电压和温度为例说明本监测模块的设计实现。
低压回路:使用MC9S08DZ60实现控制逻辑,电源由外部12V蓄电池提供;电源电路作用为将蓄电池电压转化为+5V电压,采用芯片TLE4275G 实现;通讯电路采用CAN和SPI 的通讯方式。
隔离电路:采用光电隔离继电器(PhotoMos Relay) 实现控制信号的隔离;电源的隔离可以采用隔离电源,也可以采用直接从高压取电低压控制隔离的方式,设计采用后者去实现;通讯电路采用光耦或通讯隔离芯实现高压回路通讯电路和低压回路的通讯连接。
高压回路:采用运放加阻容的方式实现电压信号的转换和调理,采用NTC 热敏电阻加分压电路实现温度信号的转换;采用高压到低压的电源转换芯片实现高压控制回路的供电;采用带SPI 接口的12位A/D转换器AD7888实现模拟信号到数字信号的转换并将数据传送出去。电压调理电路、温度调理电路、AD7888应用电路分别如图3、图4和图5所示。
下一篇:感应式指针手表电池测试器方案
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- 华为固态电池新突破:硫化物电解质专利发布,破解液态电池衰减难题
- 48V 技术的魅力:系统级应用中的重要性、优势与关键要素
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 如何选择电压基准源
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 废旧锂离子电池回收取得重要突破
- 面向车载应用的 DC/DC 电源
- 南芯科技推出面向储能市场的80V高效同步双向升降压充电芯片
- 强茂SGT MOSFET第一代系列:创新槽沟技术 车规级60 V N通道 突破车用电子的高效表现
- 非常见问题解答第223期:如何在没有软启动方程的情况下测量和确定软启动时序?
- Vicor高性能电源模块助力低空航空电子设备和 EVTOL的发展
- Bourns 推出两款厚膜电阻系列,具备高功率耗散能力, 采用紧凑型 TO-220 和 DPAK 封装设计
- Bourns 全新高脉冲制动电阻系列问世,展现卓越能量消散能力
- Nexperia推出新款120 V/4 A半桥栅极驱动器,进一步提高工业和汽车应用的鲁棒性和效率
- 英飞凌推出高效率、高功率密度的新一代氮化镓功率分立器件
- Vishay 新款150 V MOSFET具备业界领先的功率损耗性能
- 强茂SGT MOSFET第一代系列:创新槽沟技术 车规级60 V N通道 突破车用电子的高效表现
- 面向车载应用的 DC/DC 电源