设计简易的隔离式偏压电源
2012-06-25 来源:21IC
本文将探讨如何以最少零件、最低复杂度及最节省成本的方法,针对闸极驱动、隔离感测与通讯电路,设计隔离式电源供应电路。当输入电压较低,而且电路通电时允许少许(5%) 电压偏差,就能够使用这种电路。
图1的例子示范了专为简易隔离式偏压电源所开发的IC,任何允许下沉操作(sink operaton)的同步降压电路均可使用。这种电路称为非对称半桥返驰电路(asymmetrical half-bridge flybuck) ,其运作方式与同步降压稳压器相当类似。连接输入电压的FET 图腾柱(totem pole) 输出会供应电感电容滤波器。接下来透过分压器(voltage divider) 及误差放大器负输入调节滤波器输出。误差放大器会控制FET 图腾柱(totem pole) 输出的负载周期,使DC 电压维持在感测点(sense point)。
C6 的电压相当于负载率(duty factor) 乘以输入电压。和降压功率级一样,电感的伏秒(voltage-second) 必须等于零。但此电路在电感加入一个耦合绕组(coupled winding) ,并且使用二极管修正低位FET 启动时所反射的电感电压。由于这段期间的电感电压等于输出电压,因此电路的输出将获得调节。不过一次侧及二次侧的电压降幅差异将降低调节的效果。在此电路中,负载的电压调节将受到二极管D1 正向电压降幅的影响,若将二极管改换成FET,即可提升负载调节的效果。
图1:同步降压电路提供隔离式电源供应。
和耦合电感SEPIC 一样,此拓朴的寄生组件也会影响电路性能。在导通时间内,电路状况相当良好,大部份的电流都流入耦合电感T1 的磁化电感,使C6 充电。输出电容C3 则供应负载电流。不过,在关闭期间,两个电容将透过电感的耦合绕组平行放置。这两个电容具有不同的电压,只有回路中的寄生组件会限制两者之间的电流。这些寄生组件包括这两个电容的ESR、耦合电感的绕组电阻、低位MOSFET 与二极管的阻抗,以及耦合电感的漏损电感。
图2显示不同漏损电感值的模拟电流。上半部为T1 一次侧的电流,下半部为输出二极管D1 的电流。紧密耦合电感10 nH 与松散耦合电感1 uH 的漏损电感各不相同。对于紧密耦合电感,峰值电流较高,也受到回路阻抗的实质限制。
对于松散耦合电感,峰值电流较低。较高的漏损可减少RMS 电流,有助于改善电源供应的效率。图2显示两者的比较。松散耦合电感的电流最多可减少50%,可减少少数组件的耗损达75%。松散耦合的缺点是输出电压的调节不佳。
图2:低漏损增加循环电流。
图3显示如图1的转换器所呈现的负载调节结果。如果负载电流受限制,在大部分的情况下,此转换器将提供足够的调节。在轻负载时,可看出二极管接面电压变化及振铃的影响。可能需要最小负载或Zener 箝位,才能降低这些轻负载效应。在重负载时,电路的寄生组件会降低调节的效果。因此减少组件数有助于提升效果。例如,将二极管改换成同步切换,将大幅提升负载调节。
图3:返驰负载调节在大多数情况下均良好。
总而言之,返驰式(Flyback)转换器是相当具吸引力的拓朴,能够提供低成本且简单的隔离式电源供应,承受输出5% 至10% 的电压变化。二极管整流器在5V 下的输出效率能够维持80% 的良好状态,而且同步整流器的状态也将更为改善。
参考文献
· Chen and Chen. Small-Signal Modeling of Assymetrical Half-Bridge Flyback Converter. IPEMC 2006.
上一篇:高速的DSC让控制系统游刃有余
下一篇:太阳能热泵工作原理及深度技术分析
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样