基于CAN的电源控制系统设计
2007-03-09
摘 要:介绍了基于CAN的集散式电源控制系统中通信的实现,对其软硬件的设计,调试关键处及其实现的具体功能进行了说明。 关键词:CAN总线;TMS320LF2407;集散式电源控制系统;通信 CAN总线是一种能有效支持分布式控制系统的串行通信网络,一方面,其通信方式灵活,可实现多主方式工作,还可实现点对点、点对多点等多种数据收发方式;另一方面,他能在相对较大的距离间进行较高位速率的数据通信,例如在3.3 km的距离内其传输速率可达20 kb/s。我们的系统是由上位机对多台并列的单电源控制系统进行控制管理,单电源的间距在100 m左右,且其必须置于较高的位置,系统之间要进行快速的数据传输,CAN总线能很好的满足该系统的要求。 [b]1 系统总体结构 [/b] 图1是该集散电源控制系统的结构示意图。 其中:CAN0节点是上位机。 本系统用的是C51单片机,外接CAN控制器SJA1000,他对下面多台下位机传送控制定值,并且在收集下位机送来数据后对其进行分析计算以改变定值。节点CAN1~CAN31(最多可有31台)为各单电源的控制部分,我们采用的是TI公司的TMS320LF2407芯片做主控,其上集成有CAN控制器模块。 [b]2 LF2407及其集成CAN控制模块介绍 [/b] LF2407是TI公司推出的定点DSP处理器,他采用高性能静态CMOS技术,供电电压为3.3 V,指令周期可达25 ns,其上集成了包括CAN控制器在内的多个外围模块及存储器,适用于电机及逆变电路的控制。 CAN控制器模块是集成于LF2407中的一个16位外设模块。该模块具有以下特性: (1)支持CAN2.0B协议,支持标准标识符(11位)及扩展标识符(29位),支持数据帧与远程帧。 (2)配置有6个邮箱,2个接收(0,1号),2个发送(4,5号),2个可配置(3,4号);每个邮箱数据长度为8 B。接收邮箱可进行标识符屏蔽。当标识符位被屏蔽时,在接收数据帧时无须对该位标识符进行校验。 (3)具有可编程的位定时器、中断服务和CAN总线唤醒功能。 (4)能自动回复远程请求,当发送错误或数据丢失时,有自动重发功能。 每个邮箱寄存器包含7个字的信息,与各功能模块控制寄存器相类似,LF2407为其分配了固定的数据存储器地址,例如邮箱0,其寄存器分配如下: MBX0A~D(4个字的存储空间)地址:7204~7207其中:标识符(按29位设置)在MSGIDnH的后13位和MSGIDnL中。 [b]3 硬件电路设计及调试 [/b] 在设计LF2407的CAN通信电路时应注意一个问题,即2407的供电电压为3.3 V,其CAN控制模块输出的高电平也只有3.3 V,与CAN驱动器PCA80C250电平(5 V)不兼容,在设计电路时加隔离光耦时要加以注意。图2所示为下位机侧的CAN通信原理图。 由于TX的输出光耦采用的是射极输出方式,我们的输出光耦应采用6N136(137由于其结构原因不能满足要求),图3是我们进行数据发送时测试得到的R42两端的电压波形(输出10101010…) 由我们对CAN通信控制器的位配置寄存器BCR1的设置可知,每一位数据所占的时间段中,我们的采样点在70%的时间点,在这一点的输出电压必须在额定高低电平的设定值范围内。我们选定R42=5 kΩ,得到以上波形,满足采样点处高电平≥3.5 V,低电平≤1.5 V。 [b]4 通信协议及软件实现 [/b] 在系统中,上位机给下位机发送运行定值以及起停信号,并且会定时查询各单机的运行状况以对其状态进行相应的调整。 具体通信过程分为2类: (1)上位机向下位机传送操作命令及定值,上位机发送的是数据帧。 上位机发送完数据帧后,若下位机收到该数据帧则向上位机发送确认帧,该数据帧发送结束。若发送失败,上位机在等待一段时间后未接收到确认帧,则自动重发该数据帧。 (2)上位机对下位机的运行状态及各种记录定值进行查询,上位机发送的是远程帧。 远程帧中只包含有数据类型而没有数据内容,下位机接到远程帧后,根据上位机要求的数据类型向上位机传送数据。同时等待上位机的确认帧。若未接收到确认帧则定时重发。 在该系统中,以标准帧进行通信,即采用11位的标识符。其各位的定义如下: ID0~ID4:节点标识,5位的节点标识可使网络能容纳32个节点。 ID5~ID7:数据类型,需要传送的数据种类比较多,上传的数据帧规定了7种类型(包括确认帧),与此对应下传的远程帧有6种类型,而下传的数据帧则有6种类型。需要至少3位标识符来确定数据类型。 ID8~ID10:帧计数,数据量最大的数据类型包含有17字的数据,而每帧最多能传4字,故该类型数据至少需要5帧才能传完。需对数据帧进行计数以对传送数据具体类型进行确定,故至少需要3位标识符来进行确定帧计数。 由于LF2407有专门的CAN模块中断,且在CAN控制模块中设计了专门的CAN中断标志及屏蔽寄存器,可以十分方便地采用中断的方式来启动CAN控制器进行数据的接收与发送。 在进行CAN控制器的设置时,需要先对改变数据请求位CCR进行使能,并在改变后进行复原。值得注意的是,TMS320LF2407中有很多寄存器位是需要通过写“1”来实现清“0”的,还有些位是只能读不能用程序直接改写的,例如:对邮箱中断(包括接收和发送)的标志位MIFn(0~5),在进入中断响应后应将其清除,但该位是只读位,用户程序只有写1到TCR寄存器的TAn位(对发送邮箱)和写1到RCR寄存器的RMPn位(对接受邮箱)才可达到清位目的。 [b] 5 实现的功能[/b] 通过该通信系统实现的功能包括:定值传送(从上位机传到下位机的数据帧): (1)对时:具体到时分秒的数据。 (2)运行定值的传输:包括闪络参数(闪络系数KSP,给定火花率SPARK_NUM)、充电参数(给定峰值Up,上升率RISE-NUM,充电时限Ton-max)、放电参数(平均电压Vg,平均电流Ig,放电时间极限Toff-max)。 (3)保护定值:包括开路参数(电压,电流,延时)、短路参数(电压,电流,延时)、欠压电压、延时、过载电流、偏励磁、IGBT温度、油温等。 (4)通道参数:包括一次电流、输出电压电流、IGBT温度、油温、输入电流(三相)、直流电压。 运行定值查询(上位机发出远程帧):包括系统状态、故障记录、运行定值、保护定值、通道系数等。 [b] 6 结 语 [/b] 本系统已经过调试,在我们初制成的单对单系统(上位机带1台控制系统)中,能抗除强干扰,在较大传输数据量的情况下正常工作。 参考文献 [1] 刘和平.TMS320LF240xDSP结构原理及应用[M].北京:航空航天大学出版社,2002. [2] 邬宽明.CAN总线原理和应用系统设计[M].北京:航空航天大学出版社,1996. 2001.
进入电源管理查看更多内容>>
下一篇:智能配电网监测系统的实现
- 华为固态电池新突破:硫化物电解质专利发布,破解液态电池衰减难题
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- 48V 技术的魅力:系统级应用中的重要性、优势与关键要素
- 如何选择电压基准源
- 南芯科技推出面向储能市场的80V高效同步双向升降压充电芯片
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 恩智浦发布MC33777,革新电动汽车电池组监测技术
- 废旧锂离子电池回收取得重要突破
- Jolt Capital收购并投资Dolphin Design 精心打造的混合信号IP业务
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
热门新闻
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
最新频道
相关电子头条文章