直流电机功率驱动芯片及其应用集锦
2011-12-20 来源:互联网
SA60 和LMD18245 分别是美国Apex 公司和NS 公司推出的面向中小型直流电机的全桥功率输出电路。它们既具有在外接少量元件的情况下实现电机的功率驱动、控制以及提供保护等功能的共性,又具有各自特色。下面就其引脚、功能特点及其典型应用作一个介绍。
两芯片的主要性能参数及其特点
SA60 的性能参数及应用范围
SA60 的是一个PWM 型功率输出芯片, 电路提供给电机的电源电压最大可达到80V , 能连续向负载提供10A 的电流。最大模拟输入电压5V , PWM载波频率可以到250kHz , 而效率可以高达97 %, 该芯片还可以外接一个可兼容的TTL 型的PWM 的信号来同步四象限模式的幅值和方向。SA60 主要应用在驱动中小型直流电机,D 类功率放大,轴承激励等场合。
LMD18245 的性能参数及应用范围
LMD18245 芯片可为电机提供最大55V 的电源电压,逻辑电路电压12V ,最大持续电流输出3A ,峰值电流可达6A ,最小输入脉冲宽度2μS ,电流传感器最大线性误差±9 %。与SA60 一样, 该功率输出级具有很高的效率。由于在
芯片中集成了四位D/ A转换器和电机电流传感器、固定切断时间的斩波放大器等电路, 所以LMD18254 很容易完成对电机电流的数字控制,实现步进电机的微步驱动。因此,该芯片主要用于小型直流电机特别是步进电机的控制和驱动上。
引脚及其功能
外形
SA60 和LMD18245 的外形封装如图1。
内部电路框及各引脚功能
SA60 各引脚功能
SA60 的内部结构框如图2 所示。电路共有12个引脚,其中10、7 两脚分别是H 桥和PWM 及桥的驱动级电源端; 9、11 为功率信号输出端, 其输出波形与输入信号的关系是:9 脚输出PWM 信号的占空比随输入信号电压的增加而增大,11 脚却反之; 1、6脚为接地端, 前者是模拟接地端, 后者是功率接地端;8、12 端可以直接接功率地, 也可以通过一个电阻接地,作为限流感用,该端的电压最大值为±2V ;2、4 两端分别是模拟和数字控制信号的输入端。
LMD18245 各引脚功能
LMD18245 的内部结构框图如图3 所示。9 脚是电源端; 1、15 脚功率桥的输出端; 12、5 脚分别是信号地和功率电路接地端; 4、6、7、8 是D/ A 转换器的二进制数据输入端, 其中4 脚为二进制数的最高位;10 脚是紧急停止控制端,高电平有效; 11 脚为方向逻辑输入端;3 脚上联接一个并联的RC 网络,可将单稳脉冲宽度设置为: 1. 1 RC 秒。此外, 该芯片还提供了电流传感器放大输出端(13 脚) ,比较信号输出端(2 脚) ,和数模转换参考电压输入端(14 脚) 。
芯片的应用实例
虽然这两个芯片都是开关式全桥功率驱动电路,由于内部结构的不同,工作方式也不尽相同,所以在作为电机控制电路时,电路的工作方式也各有特点。图4 是SA60 驱动直流电动机时的典型接线图,在该图中芯片被联接成模拟输入方式, 在数字输入端(2 脚) 与模拟地之间联接一个电容器CT ,改变它的大小,可以调整PWM 载波的频率在22~250kHz之间变化的。
进入电源管理查看更多内容>>
两芯片的主要性能参数及其特点
SA60 的性能参数及应用范围
SA60 的是一个PWM 型功率输出芯片, 电路提供给电机的电源电压最大可达到80V , 能连续向负载提供10A 的电流。最大模拟输入电压5V , PWM载波频率可以到250kHz , 而效率可以高达97 %, 该芯片还可以外接一个可兼容的TTL 型的PWM 的信号来同步四象限模式的幅值和方向。SA60 主要应用在驱动中小型直流电机,D 类功率放大,轴承激励等场合。
LMD18245 的性能参数及应用范围
LMD18245 芯片可为电机提供最大55V 的电源电压,逻辑电路电压12V ,最大持续电流输出3A ,峰值电流可达6A ,最小输入脉冲宽度2μS ,电流传感器最大线性误差±9 %。与SA60 一样, 该功率输出级具有很高的效率。由于在
芯片中集成了四位D/ A转换器和电机电流传感器、固定切断时间的斩波放大器等电路, 所以LMD18254 很容易完成对电机电流的数字控制,实现步进电机的微步驱动。因此,该芯片主要用于小型直流电机特别是步进电机的控制和驱动上。
引脚及其功能
外形
SA60 和LMD18245 的外形封装如图1。
内部电路框及各引脚功能
SA60 各引脚功能
SA60 的内部结构框如图2 所示。电路共有12个引脚,其中10、7 两脚分别是H 桥和PWM 及桥的驱动级电源端; 9、11 为功率信号输出端, 其输出波形与输入信号的关系是:9 脚输出PWM 信号的占空比随输入信号电压的增加而增大,11 脚却反之; 1、6脚为接地端, 前者是模拟接地端, 后者是功率接地端;8、12 端可以直接接功率地, 也可以通过一个电阻接地,作为限流感用,该端的电压最大值为±2V ;2、4 两端分别是模拟和数字控制信号的输入端。
LMD18245 各引脚功能
LMD18245 的内部结构框图如图3 所示。9 脚是电源端; 1、15 脚功率桥的输出端; 12、5 脚分别是信号地和功率电路接地端; 4、6、7、8 是D/ A 转换器的二进制数据输入端, 其中4 脚为二进制数的最高位;10 脚是紧急停止控制端,高电平有效; 11 脚为方向逻辑输入端;3 脚上联接一个并联的RC 网络,可将单稳脉冲宽度设置为: 1. 1 RC 秒。此外, 该芯片还提供了电流传感器放大输出端(13 脚) ,比较信号输出端(2 脚) ,和数模转换参考电压输入端(14 脚) 。
芯片的应用实例
虽然这两个芯片都是开关式全桥功率驱动电路,由于内部结构的不同,工作方式也不尽相同,所以在作为电机控制电路时,电路的工作方式也各有特点。图4 是SA60 驱动直流电动机时的典型接线图,在该图中芯片被联接成模拟输入方式, 在数字输入端(2 脚) 与模拟地之间联接一个电容器CT ,改变它的大小,可以调整PWM 载波的频率在22~250kHz之间变化的。
虽说LDM18245 的持续电流输出的指标还不足SA60 的三分之一,但在控制方式上有它灵活方便的一面,采用不同的联接方式可以实现电机的不同的控制方式,获得不同的控制性能,图5 是用双极性输出方式驱动直流电机的实例。其中固定斩波时间为1. 1 RC;电流传感电阻RW 参考公式:
计算,其中UREF是D/ A 转换电路的参考电压,D为D/ A 转换电路的输入电压值, IS 为电机电流的最大设定值。与SA60 不同,在LMD18245 芯片中没有PWM 电路,想通过PWM 的占空比来控制电机的转速和转向,需要外接控制器,联接方法如图中所示。
应用时的注意事项
在实际使用这两种芯片时必须注意如下几个事项。一是在电源端和功率地端必须接旁路电容,否则由于电机电流跳变或换向引起的尖峰电压和浪涌电流会使芯片损坏。具体的做法是在芯片的电源端并联一个1μF 的高频陶瓷电容和一个100μF 的铝电解电容,并注意联接线要尽量的短。二是在布线时注意将模拟地和功率地严格分开,注意控制信号输入线和功率信号输出线保持距离,以免反馈、干扰。
小结
这两款功率输出芯片都具有输出电流大、工作效率高、电路设计简便、体积小巧、性能稳定等特点。所以它们的应用范围远不止上述所谈到的几种, 就SA60 以及它的同系列产品SA50 、51 芯片来说,作为D 类音频功率输出电路已有应用,这类功率输出装置功率之高是传统模拟音频功率输出级所望尘莫及。
计算,其中UREF是D/ A 转换电路的参考电压,D为D/ A 转换电路的输入电压值, IS 为电机电流的最大设定值。与SA60 不同,在LMD18245 芯片中没有PWM 电路,想通过PWM 的占空比来控制电机的转速和转向,需要外接控制器,联接方法如图中所示。
应用时的注意事项
在实际使用这两种芯片时必须注意如下几个事项。一是在电源端和功率地端必须接旁路电容,否则由于电机电流跳变或换向引起的尖峰电压和浪涌电流会使芯片损坏。具体的做法是在芯片的电源端并联一个1μF 的高频陶瓷电容和一个100μF 的铝电解电容,并注意联接线要尽量的短。二是在布线时注意将模拟地和功率地严格分开,注意控制信号输入线和功率信号输出线保持距离,以免反馈、干扰。
小结
这两款功率输出芯片都具有输出电流大、工作效率高、电路设计简便、体积小巧、性能稳定等特点。所以它们的应用范围远不止上述所谈到的几种, 就SA60 以及它的同系列产品SA50 、51 芯片来说,作为D 类音频功率输出电路已有应用,这类功率输出装置功率之高是传统模拟音频功率输出级所望尘莫及。
相关文章
- 华为固态电池新突破:硫化物电解质专利发布,破解液态电池衰减难题
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- 48V 技术的魅力:系统级应用中的重要性、优势与关键要素
- 如何选择电压基准源
- 南芯科技推出面向储能市场的80V高效同步双向升降压充电芯片
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 恩智浦发布MC33777,革新电动汽车电池组监测技术
- 废旧锂离子电池回收取得重要突破
- Jolt Capital收购并投资Dolphin Design 精心打造的混合信号IP业务
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
热门新闻
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
最新频道