如何处理高 di/dt 负载瞬态(上)
2012-04-24 来源:德州仪器 (TI)
就许多中央处理器 (CPU) 而言,规范要求电源必须能够提供大而快速的充电输出电流,特别是当处理器变换工作模式的时候。例如,在 1V 的系统中,100 A/uS 负载瞬态可能会要求将电源电压稳定在 3% 以内。解决这一问题的关键就是要认识到 这不仅仅是电源的问题,电源分配系统也是一个重要因素,而且在一款解决方案中我们是很难将这二者严格地划清界限。
这些高 di/dt 要求的意义就在于电压源必须具有非常低的电感。重新整理下面的公式并求解得到允许的电源电感:
在快速负载电流瞬态通道中电感仅为 0.3 nH。为了便于比较,我们来看一个四层电路板上的0.1 英寸 (0.25 cm) 宽电路板线迹所具有的电感大约为 0.7 nH/英寸 (0.3 nH/cm)。IC 封装中接合线的典型电感在1 nH 范围内,印刷电路板的过孔电感在0.2 nH 范围内。
此外,还有一个与旁路电容有关的串联电感,如图 1 所示。顶部的曲线是贴装在四层电路板上的一个22 uF、X5R、16V、1210 陶瓷电容的阻抗。正如我们所期望的那样(100 kHz 以下),阻抗随着频率的增加而下降。然而,在800 kHz时有一个串联电感,此时电容会变得有电感性。该电感(其可以从电容值和谐振频率计算得出)为 1.7 nH,其大大高于我们 0.3 nH 的目标值。幸运的是,您可以使用并联电容以降低有效的 ESL。图 1 底部的曲线为两个并联电容的阻抗。有趣的是谐振变得稍微低了一些,这表明有效电感并不是绝对的一半。基于谐振频率,就两个并联的电容而言,新电感则为 1.0 nH 或ESL 下降 40%,而非下降 50%。这一结果可以归结为两个原因:互连电感和两个电容之间的互感。
图 1 并联电容阻抗寄生现象衰减效果
电流通道的环路尺寸在一定程度上决定了连接组件中的寄生电感,组件尺寸决定了环路的面积。尺寸与电感相关系数如表 1 所示,其显示了各种尺寸陶瓷表面贴装电容的电容电感。一般来说,体积越大的电容具有更大的电感。该表不包括电路板上贴装电容的电感,在我们以前的测量中该电感由 1 nH 增加到了 1.7 nH。另一个有趣的问题是端接的位置对电感有很大的影响。0805 电容在电容的较短一侧有端接而0508 电容则在较长的一侧有端接。这几乎将电流通道分为了两半,从而大降低了电感。这种变化了的结构将电感降低了四分之一。
表 1 陶瓷 SMT 电容尺寸会影响寄生电感
尺寸 ESL (nH)
0603 0.6
0805 0.8
0508 0.2
1206 1.0
0612 0.2
1210 1.0
总之,高 di/dt 负载需要仔细考虑旁路问题以保持电源动态稳压。表面贴装电容需要非常靠近负载以最小化其互连电感。电容具有可能避免大量去耦的寄生电感。降低这一寄生电感的并联电容是有效的,但互连和互感减弱了这一效果。使用具有更短电流通道的电容也是有效的。这可以用体积较小的部件或具有交流端接(其使用了更短的尺寸用于电流)的部件来实施。
下次我们将讨论高 di/dt瞬态负载以及其在设计和测试电源时的意义,敬请期待。 届时我们的讨论重点从本地旁路转变为电源设计意义。
如欲了解有关本解决方案及其他电源解决方案的更多详情,敬请访问: www.ti.com.cn/power。
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样