电源设计中的电容应用
2011-08-02 来源:电子工程专辑
这里,只介绍一下电路板电源设计中的电容使用情况。这往往又是电源设计中最容易被忽略的地方。很多人搞ARM,搞DSP,搞FPGA,乍一看似乎搞的很高深,但未必有能力为自己的系统提供一套廉价可靠的电源方案。这也是我们国产电子产品功能丰富而性能差的一个主要原因,根源是研发风气吧,大多研发工程师毛燥、不踏实;而公司为求短期效益也只求功能丰富,只管今天杀鸡饱餐一顿,不管明天还有没有蛋吃,“路有饿死骨”也不值得可惜。
言归正转,先跟大家介绍一下电容。
大家对电容的概念大多还停留在理想的电容阶段,一般认为电容就是一个C。却不知道电容还有很多重要的参数,也不知道一个1uF的瓷片电容和一个1uF的铝电解电容有什么不同。实际的电容可以等效成下面的电路形式:
C:电容容值。一般是指在1kHz,1V 等效AC电压,直流偏压为0V情况下测到的,不过也可有很多电容测量的环境不同。但有一点需注意,电容值C本身是会随环境发生改变的。
ESL:电容等效串联电感。电容的管脚是存在电感的。在低频应用时感抗较小,所以可以不考虑。当频率较高时,就要考虑这个电感了。举个例子,一个0805封装的0.1uF贴片电容,每管脚电感1.2nH,那么ESL是2.4nH,可以算一下C和ESL的谐振频率为10MHz左右,当频率高于10MHz,则电容体现为电感特性。
ESR:电容等效串联电阻。无论哪种电容都会有一个等效串联电阻,当电容工作在谐振点频率时,电容的容抗和感抗大小相等,于是等效成一个电阻,这个电阻就是ESR。因电容结构不同而有很大差异。铝电解电容ESR一般由几百毫欧到几欧,瓷片电容一般为几十毫欧,钽电容介于铝电解电容和瓷片电容之间。
下面我们看一些X7R材质瓷片电容的频率特性:
当然,电容相关的参数还有很多,不过,设计中最重要的还是C和ESR。
下面简单介绍一下我们常用到的三种电容:铝电解电容,瓷片电容和钽电容。
1)铝电容是由铝箔刻槽氧化后再夹绝缘层卷制,然后再浸电解质液制成的,其原理是化学原理,电容充放电靠的是化学反应,电容对信号的响应速度受电解质中带电离子的移动速度限制,一般都应用在频率较低(1M 以下)的滤波场合,ESR主要为铝萡电阻和电解液等效电阻的和,值比较大。铝电容的电解液会逐渐挥发而导致电容减小甚至失效,随温度升高挥发速度加快。温度每升高10度,电解电容的寿命会减半。如果电容在室温27 度时能使用10000小时的话,57度的环境下只能使用1250小时。所以铝电解电容尽量不要太靠近热源。
2)瓷片电容存放电靠的是物理反应,因而具有很高的响应速度,可以应用到上G的场合。不过,瓷片电容因为介质不同,也呈现很大的差异。性能最好的是C0G材质的电容,温度系数小,不过材质介电常数小,所以容值不可能做太大。而性能最差的是Z5U/Y5V材质,这种材质介电常数大,所以容值能做到几十微法。但是这种材质受温度影响和直流偏压(直流电压会致使材质极化,使电容量减小)影响很严重。下面我们看一下C0G、X5R、Y5V三种材质电容受环境温度和直流工作电压的影响。
可以看到C0G的容值基本不随温度变化,X5R稳定性稍差些,而Y5V材质在60度时,容量变为标称值的50%。
可以看到50V 耐压的Y5V 瓷片电容在应用在30V 时,容量只有标称值的30%。陶瓷电容有一个很大的缺点,就是易碎。所以需要避免磕碰,尽量远离电路板易发生形变的地方。
3)钽电容无论是原理和结构都像一个电池。下面是钽电容的内部结构示意图:
钽电容拥有体积小、容量大、速度快、ESR低等优势,价格也比较高。决定钽电容容量和耐压的是原材料钽粉颗粒的大小。颗粒越细可以得到越大的电容,而如果想得到较大的耐压就需要较厚的Ta2O5,这就要求使用颗粒大些的钽粉。所以体积相同要想获得耐压高而又容量大的钽电容难度很大。钽电容需引起注意的另一个地方是:钽电容比较容易击穿而呈短路特性,抗浪涌能力差。很可能由于一个大的瞬间电流导致电容烧毁而形成短路。这在使用超大容量钽电容时需考虑(比如1000uF 钽电容)。
- 华为固态电池新突破:硫化物电解质专利发布,破解液态电池衰减难题
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- 48V 技术的魅力:系统级应用中的重要性、优势与关键要素
- 如何选择电压基准源
- 南芯科技推出面向储能市场的80V高效同步双向升降压充电芯片
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 恩智浦发布MC33777,革新电动汽车电池组监测技术
- 废旧锂离子电池回收取得重要突破
- Jolt Capital收购并投资Dolphin Design 精心打造的混合信号IP业务
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样