可提供短路保护的浪涌限幅器
2007-03-09
对于包含有大电容量的装置而言,控制浪涌电流成为一大难题。最简单的方法就是将浪涌限幅电阻器与电容器组串联,但电阻器会浪费功率并增加压降。图1所示电路解决了这一难题并能提供其它优势。在启动时,双极型 PNP晶体管Q2使N沟道功率MOSFET晶体管Q1保持关断,直到电容器Cl两端的电压高到足以关断Q2的电平为止。在此时间间隔内,电阻器R1为C1及电路其它元件提供启动电流。当Q2关断时,Q1导通并在 R1两端提供一条低阻通道。当关闭外部电源时,电路随C1放电而复位。 作为额外好处,该电路还可提供短路负载保护。随着通过Q1的电流增大,Q1两端的压降也由于Q1内部导通电阻而增大。当Q1两端的电压降至约 0.6V(Q2的 VBE(ON)电压)时,Q2导通且Q1关断,并迫使负载电流通过R1。消除短路恢复正常工作,并使Q2关断及Q1导通。请注意:由于Q1导通电阻充当该功能的检流电阻器,故短路消除点可随环境温度及Q1的特性而变化。您可以通过选择R1与Q1的导通电阻特性来调整Q1的导通和关断阀值。增加一个与Q2 发射极相串联的普通二极管或齐纳二极管,就可增加短路脱扣电流。 用于构建此电路的元器件及其参数值取决于具体应用。根据设计要求,您可能需要为R1选择一个大功率电阻器,或给 Q1增加一片散热片。但对于许多应用,该电路比其它常规方法更节省功率。
进入电源管理查看更多内容>>
下一篇:电力变换装置中短路保护电路的设计
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- 华为固态电池新突破:硫化物电解质专利发布,破解液态电池衰减难题
- 48V 技术的魅力:系统级应用中的重要性、优势与关键要素
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 如何选择电压基准源
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 废旧锂离子电池回收取得重要突破
- 面向车载应用的 DC/DC 电源
- 南芯科技推出面向储能市场的80V高效同步双向升降压充电芯片
- 强茂SGT MOSFET第一代系列:创新槽沟技术 车规级60 V N通道 突破车用电子的高效表现
热门新闻
- 非常见问题解答第223期:如何在没有软启动方程的情况下测量和确定软启动时序?
- Vicor高性能电源模块助力低空航空电子设备和 EVTOL的发展
- Bourns 推出两款厚膜电阻系列,具备高功率耗散能力, 采用紧凑型 TO-220 和 DPAK 封装设计
- Bourns 全新高脉冲制动电阻系列问世,展现卓越能量消散能力
- Nexperia推出新款120 V/4 A半桥栅极驱动器,进一步提高工业和汽车应用的鲁棒性和效率
- 英飞凌推出高效率、高功率密度的新一代氮化镓功率分立器件
- Vishay 新款150 V MOSFET具备业界领先的功率损耗性能
- 强茂SGT MOSFET第一代系列:创新槽沟技术 车规级60 V N通道 突破车用电子的高效表现
- 面向车载应用的 DC/DC 电源
最新频道
最新器件
相关电子头条文章