CMOS电路IDDQ测试电路设计
2011-11-23 来源:互联网
摘要:针对CMOS集成电路的故障检测,提出了一种简单的IDDQ静态电流测试方法,并对测试电路进行了设计。所设计的IDDQ电流测试电路对CMOS被测电路进行检测,通过观察测试电路输出的高低电平可知被测电路是否存在物理缺陷。测试电路的核心是电流差分放大电路,其输出一个与被测电路IDDQ电流成正比的输出。测试电路串联在被测电路与地之间,以检测异常的IDDQ电流。测试电路仅用了7个管子和1个反相器,占用面积小,用PSpice进行了晶体管级模拟,实验结果表明了测试电路的有效性。
关键词:IDDQ测试;测试方法;电流检测;CMOS电路
0 引言
测试CMOS电路的方法有很多种,测试逻辑故障的一般方法是采用逻辑响应测试,即通常所说的功能测试。功能测试可诊断出逻辑错误,但不能检查出晶体管常开故障、晶体管常闭故障、晶体管栅氧化层短路,互连桥短路等物理缺陷引发的故障,这些缺陷并不会立即影响电路的逻辑功能,通常要在器件工作一段时间后才会影响其逻辑功能。
功能测试是基于逻辑电平的故障检测,通过测量原始输出的电压来确定逻辑电平,因此功能测试实际上是电压测试。电压测试对于检测固定型故障,特别是双极型工艺中的固定型故障是有效的,但对于检测CMOS工艺中的其他类型故障则显得有些不足,而这些故障类型在CMOS电路测试中却是常见的。对于较大规模电路,电压测试测试集的生成相当复杂且较长,需要大量的实验数据样本。
IDDQ测试是对功能测试的补充。通过测试静态电流IDDQ可检测出电路中的物理缺陷所引发的故障。IDDQ测试还可以检测出那些尚未引起逻辑错误,但在电路初期会转换成逻辑错误的缺陷。本文所设计的IDOQ电流测试电路对CMOS被测电路进行检测,通过观察测试电路输出的高低电平可知被测电路是否有物理缺陷。测试电路的核心是电流差分放大电路,其输出一个与被测电路IDDQ电流成正比的输出。测试电路串联在被测电路与地之间,以检测异常的IDDQ电流。
1 IDDQ测试原理
电流IDDQ是指当CMOS集成电路中的所有管子都处于静止状态时的电源总电流。对于中小规模集成电路,正常状态时无故障的电源总电流为微安数量级;当电路出现桥接或栅源短接等故障时,会在静态CMOS电路中形成一条从正电源到地的低阻通路,会导致电源总电流超过毫安数量级。所以静态电源电流IDDQ测试原理是:无故障CMOS电路在静态条件下的漏电流非常小,而故障条件下漏电流变得非常大,可以设定一个阈值作为电路有无故障的判据。
CMOS集成电路不论其形式和功能如何,都可以用一个反向器的模型来表示。IDDQ测试电路框图如图1所示,电路IDDQ检测结果为一数字输出(高低电平)。测试电路中电流差分放大电路的输出与被测电路的IDDQ成正比。测试电路串联在电源、被测电路与地中间,以检测异常的IDDQ电流。为了实现测试,需要增加两个控制端和一个输出端。
2 测试电路设计
2.1 电路设计
图2所示为CMOS测试电路,其由1个电流差分放大电路(T2,T3)、2个镜像电流源(T1,T2和T3,T4)和1个反相器(T7,T8)组成。镜像电流源(T1,T2)用来产生一个参考电流IREF,电流源(T3,T4)的电流为(IDDQ-IREF),其作用相当于一个电流比较器。IDDQ是被测电路的电源电流。差分放大电路(T2,T3)计算出参考电流与被测电路异常电流IDDQ的差。参考电流IREF的值设为被测电路正常工作时的静态电源电流,其取值可通过统计分析求出。
2.2 工作模式
测试电路工作于两种模式:正常工作模式和测试模式。电路使能端E作为管子T0的输入,用来控制测试电路与被测电路的连接和断开,即测试电路的工作模式。
在正常工作模式下(E=1),T0导通,IDDQ经T0管到地,测试电路与被测电路断开,被测电路不会受到测试电路的影响。
在测试模式下(E=0),T0管截止,被测电路的静态电流IDDQ与参考电流IREF比较,如果静态电流比参考电流大,则电流差分放大电路计算出差值,反向器的输出即测试输出为高电平(逻辑1),表明被测电路存在缺陷。若静态电流比参考电流小,反向器输出即测试输出为低电平(逻辑0),表明被测电路无缺陷。
2.3 不足与改进
因为测试电路加在被测电路与地之间,所以会导致被测电路的性能有所下降。为了消除这种影响,另外加上控制端X。在正常工作模式情况下,X端接地,测试电路与被测电路分离,测试电路对被测电路无任何影响。在测试模式下,X端悬空,E端接地,T0管截止,测试电路进行测试。
在测试模式下,X端悬空,E端接低电平,若电路有缺陷,测试输出为高电平。但是被测电路输入跳变时,被测电路无缺陷,也会产生一较大的动态峰值电流IDDQ。为了避免出现误判断,在此种情况下,测试电路应输出为低电平。所以在被测试电路输入变化后,必须在瞬态电流达到稳定时才可进行IDDQ测试。
3 结语
本文所设计的IDDQ测试电路由一个电流差分放大电路、电流源、反相器组成。在正常工作模式下,测试电路与被测电路断开;在测试模式下,电流差分放大电路计算出被测电路电流与参考电流的差,反相器输出是否有缺陷的高低电平信号。测试电路用了7个管子和1个反相器,占用面积小,用Pspice进行了晶体管级模拟,结果证明了其有效性。IDDQ测试的缺点是随着特征尺寸的缩小,每个晶体管阈值漏电流的增加,电路设计中门数的增加,电路总的泄漏电流也在增加,这样分辨间距会大大缩小,当出再重叠时就很难进行有效的故障检测和隔离。但尽管如此,由于IDDQ测试电路的简易性非常突出,所以它仍然是目前可测性测试技术的研究热点。
下一篇:高性能电源保护电路
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- 华为固态电池新突破:硫化物电解质专利发布,破解液态电池衰减难题
- 48V 技术的魅力:系统级应用中的重要性、优势与关键要素
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 如何选择电压基准源
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 废旧锂离子电池回收取得重要突破
- 面向车载应用的 DC/DC 电源
- 南芯科技推出面向储能市场的80V高效同步双向升降压充电芯片
- 强茂SGT MOSFET第一代系列:创新槽沟技术 车规级60 V N通道 突破车用电子的高效表现
- 非常见问题解答第223期:如何在没有软启动方程的情况下测量和确定软启动时序?
- Vicor高性能电源模块助力低空航空电子设备和 EVTOL的发展
- Bourns 推出两款厚膜电阻系列,具备高功率耗散能力, 采用紧凑型 TO-220 和 DPAK 封装设计
- Bourns 全新高脉冲制动电阻系列问世,展现卓越能量消散能力
- Nexperia推出新款120 V/4 A半桥栅极驱动器,进一步提高工业和汽车应用的鲁棒性和效率
- 英飞凌推出高效率、高功率密度的新一代氮化镓功率分立器件
- Vishay 新款150 V MOSFET具备业界领先的功率损耗性能
- 强茂SGT MOSFET第一代系列:创新槽沟技术 车规级60 V N通道 突破车用电子的高效表现
- 面向车载应用的 DC/DC 电源