配电变压器防雷保护措施分析
2011-12-12 来源:chinaaet
1 前言
我国共有2400个县级农村电网及280个城市电网,配电变压器数量达数百万台,加之我国土地辽阔,且雷暴日偏多,如南方某些地区年雷暴日高达100~130日,配电变压器受雷电波侵害较为严重,这不仅给供电企业带来极大的经济损失,而且严重影响供电可靠性。为此,为了防止雷电波对配电变压器的侵害,保证配电变压器安全运行,有必要对配电变压器防雷保护措施逐一分析,从而有选择性的采取适当的防雷保护措施。
2 配电变压器防雷保护措施
(1)在配电变压器高压侧装设避雷器。根据SDJ7-79《电力设备过电压保护设计技术规程》规定:配电变压器的高压侧一般应采用避雷器保护,避雷器的接地线和变压器低压侧的中性点以及变压器的金属外壳三点应连接在一起接地。这也是部颁DL/T620-1997《交流电气装置的过电压保护和绝缘配合》推荐的防雷措施。
然而,大量研究和运行经验均表明,仅在高压侧采用避雷器保护时,在雷电波作用下仍有损坏现象。一般地区年损坏率为1%,在多雷区可达5%左右,个别100雷暴日的雷电活动特殊强烈地区,年损坏率高达50%左右。究其主要原因,乃是雷电波侵入配电变压器高压侧绕组所引起的正、逆变换过电压造成的。正、逆变换过电压产生的机理如下:
①逆变换过电压。即当3~10kV侧侵入雷电波,引起避雷器动作时,在接地电阻上流过大量的冲击电流,产生压降,这个压降作用在低压绕组的中性点上,使中性点电位升高,当低压线路比较长时,低压线路相当于波阻抗接地。因此,在中性点电位作用下,低压绕组流过较大的冲击电流,三相绕组中流过的冲击电流方向相同、大小相等,它们产生的磁通在高压绕组中按变压器匝数比感应出数值极高的脉冲电势。三相脉冲电势方向相同、大小相等。由于高压绕组接成星形,且中性点不接地,因此在高压绕组中,虽有脉冲电势,但无冲击电流。冲击电流只在低压绕组中流通,高压绕组中没有对应的冲击电流来平衡。因此,低压绕组中的冲击电流全部成为激磁电流,产生很大的零序磁通,使高压侧感应很高的电势。由于高压绕组出线端电位受避雷器残压固定,这个感应电势就沿着绕组分布,在中性点幅值最大。因此,中性点绝缘容易击穿。同时,层间和匝间的电位梯度也相应增大,可能在其他部位发生层间和匝间绝缘击穿。这种过电压首先是由高压进波引起的,再由低压电磁感应至高压绕组,通常称之为逆变换。
②正变换过电压。所谓正变换过电压,即当雷电波由低压线路侵入时,配电变压器低压绕组就有冲击电流通过,这个冲击电流同样按匝数比在高压绕组上产生感应电动势,使高压侧中性点电位大大提高,它们层间和匝间的梯度电压也相应增加。这种由于低压进波在高压侧产生感应过电压的过程,称为正变换。试验表明,当低压进波为10kV,接地电阻为5Ω时,高压绕组上的层间梯度电压有的超过配电变压器的层间绝缘全波冲击强度一倍以上,这种情况,变压器层间绝缘肯定要击穿。
(2)在配电变压器低压侧加装普通阀型避雷器或金属氧化物避雷器。这种保护方式的接线为:变压器高、低避雷器的接地线、低压侧中性点及变压器金属外壳四点连接在一起接地(或称三点共一体)。
运行经验和试验研究表明,对绝缘良好的配电变压器,仅在高压侧装设避雷器时,仍有发生由于正、逆变换过电压造成的雷害事故。这是因为高压侧装设的避雷器对于正变换或逆变换过电压都是无能为力的。正、逆变换过电压作用下的层间梯度,与变压器的匝数成正比,与绕组的分布有关,绕组的首端、中部和末端均有可能破坏,但以末端较危险。低压侧加装避雷器可以将正、逆变换过电压限制在一定范围之内。
(3)高、低压侧接地分开的保护方式。这种保护方式的接线为高压侧避雷器单独接地,低压侧不装避雷器,低压侧中性点及变压器金属外壳连接在一起,并与高压侧接地分开接地。
研究表明,这种保护方式利用大地对雷电波的衰减作用可基本上消除逆变换过电压,而对正变换过电压,计算表明,低压侧接地电阻从10Ω降至2.5Ω时,高压侧的正变换过电压可降低约40%。若对低压侧接地体进行适当的处理,就可以消除正变换过电压。
该保护方式简单、经济,但对低压侧接地电阻要求较高,有一定的推广价值。
配电变压器防雷保护措施多种多样,除以上列举的以外,还有在配电变压器铁心上加装平衡绕组抑制正逆变换过电压;在配电变压器内部安装金属氧化物避雷器等等。
3 配电变压器防雷保护措施应用
通过以上分析,可以看出,各种防雷保护措施各有其特点,各地应根据雷暴日雷电活动强度来合理选择适当的防雷保护措施。
(1)在平原等少雷区,配电变压器年损坏率较低,可只采用配电变压器高压侧装设避雷器的方式。
(2)在一般雷电日地区,推荐采用配电变压器高、低压侧均装设避雷器的方式。
(3)在多雷区,单独采用某一种防雷保护措施往往不能奏效,宜采用综合防雷保护措施,即高压侧装设避雷器单独接地,低压侧避雷器、低压侧中性点及变压器金属外壳连接在一起的分开接地。
(4)在重雷区,特别是配电变压器年损坏率较高的地区,采用综合防雷保护措施仍未收到较好的防雷效果后,应根据技术经济比较,在配电变压器铁心上加装平衡绕组(即采用新型防雷避雷器),或在配电变压器内部安装金属氧化物避雷器。
4 结论
配电变压器的防雷措施多种多样,各地配电变压器安装地点实际情况又不尽相同。因地制宜,合理地选择防雷保护措施,并重视和加强配电变压器的运行管理,定能收到提高配电变压器防雷保护的效果。
上一篇:压电陶瓷变压器及其应用
下一篇:国内变压器有新突破
- 华为固态电池新突破:硫化物电解质专利发布,破解液态电池衰减难题
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- 48V 技术的魅力:系统级应用中的重要性、优势与关键要素
- 如何选择电压基准源
- 南芯科技推出面向储能市场的80V高效同步双向升降压充电芯片
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 恩智浦发布MC33777,革新电动汽车电池组监测技术
- 废旧锂离子电池回收取得重要突破
- Jolt Capital收购并投资Dolphin Design 精心打造的混合信号IP业务
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样