基于MSP430F设计的超低功耗电子温度计方案
2020-12-19 来源:elecfans
1 元器件选择
本系统的温度传感器可选用热敏电阻。在10~30℃的测量范围内,该器件的阻值随温度变化比较大,电路简单,功耗低,安装尺寸小,同时其价格也很 低,但其热敏电阻精度、重复性、可靠性相对稍差,因此,这种传感器对于检测在1℃以下,特别是分辨率要求更高的温度信号不太适用。
显示部分可以采用笔段式LCD液晶显示。特别是黑白笔段式液晶显示器的功耗极低,美观适中,价格低廉,而且驱动芯片可选择性强。为此,本设计选用了技术成熟、功耗较低、性能稳定、价格低廉的通用性LCD驱动器HT1621。
作为整个系统的核心部件,单片机的选择至关重要。通过比较多家单片机芯片,最终选定了TI公司的MSP430系列控制器,该系列控制器功耗极低,性能强大,成本也较低。
2 MSP430F单片机的主要特点
MSP430F系列是美国TI公司生产的一种超低功耗的FLASH控制器,该器件有“绿色”控制器(GREEN Mcu)之称,其技术特征代表了单片机的发展方向。MSP430的片内存储器该器件单元是能耗非常低的单元,消耗功率仅为其它闪速微控制器的五分之一。 MSP430F同其它控制器相比,既可缩小线路板空间,又可降低系统成本。
MSP430F系列器件集成了超低功率闪存、高性能模拟电路和一个16位精简指令集(RISC)CPU,且指令周期短,大部分指令可在一个指令周期 内完成。该器件的工作电流极小,并且超低功耗,关断状态下的电流仅为0.1μA,待机电流为0.8μA,常规模式下的(250μA/1MIPS@3V), 端口漏电流不足50 nA,并可零功耗掉电复位(BOR)。另外,该芯片属低电器件,仅需1.8~3.6V电压供电,因而可有效降低系统功耗。由于其具有超低功耗的数控振荡器 技术,因而可以实现频率调节和无晶振运行。其6μs的快速启动时间可以延长待机时间并使启动更加迅速,同时也降低了电池的功耗。MSP430系列芯片的片 内资源丰富,I/O端口功能强大且十分灵活,所有的I/O位均可单独配置,每一根口线分别对应输入、输出、方向和功能选择等多个寄存器里的一位。因此,其 温度模拟控制可以采用带隔离的低电压控制方式。
3 超低功耗电子温度计硬件设计
图1所示是本超低功耗电子温度计的硬件原理框图。下面给出其它单元电路的设计方案。
3.1温度采集转换电路
利用MSP430来测量电阻,就可以通过斜率技术而不使用A/D转换电路,处理起来简单易行。对于这种技术,可以使用MSP430系列芯片上的比较器和时钟来完成斜率的A/D转换。
本系统的具体温度测量是应用电容充放电把被测电阻值转换成时间,再利用MSP430内部的捕获比较寄存器准确捕捉时间,从而测量出热敏电阻的阻值,以间接获得温度值。其温度检测电路结构如图2所示。
图中,Rref是参考电阻,用于定标,Rsens是被测电阻。
系统工作时首先令MSP430接Rref的口置位,然后输出高电平Vcc并通过标准电阻对电容定时充电,定时时间到后,端口复位,使电容放电,放电 过程一直持续到电容上的电压降到充电端口为“0”电平的上限为止,截止时刻由Timer_a内部的捕捉器通过捕捉入口CA0准确地捕捉。这一段放电时间可 标记为Tref。然后,对P2.1施以同样的操作,以获得电容通过被测电阻放电的时间Tsens。最后比较Tref和Tsens,并由下式计算出被测电阻 值:
Rsens=RrefTmeas/Tref
式中,Rsens为被测热敏电阻,Tsens为被测组件放电时间,Tref为参考组件放电时间,Rref为参考精密电阻。
由上式可以看出,只要电压和电容的值在测量中保持稳定,电压和电容的具体取值便不再重要,这是因为在比例测量原理中,这些因素在计算过程中已被消 除。因此,尽管仪表的供电电池的电压具有离散性,并且该电压会随着时间的推移逐渐减小,但是,由于被测电阻值的测量与电源电压值的大小毫无关系,所以该测 量方法具有电源电压自补偿特性。
3.2 LCD液晶驱动显示电路
LCD显示电路可采用HT1621驱动,HT1621是128点内存映象和多功能的LCD驱动器。HT1621的软件配置特性使它适用于多种LCD 应用场合,包括LCD模块和显示子系统。用于连接主控制器和HT1621的管脚只有4或5条。此外,HT1621还有一个节电命令用于降低系统功耗。
用此LCD液晶驱动器可驱动4路公共端、1/3偏压比的4位液晶板。此驱动电路还具有待机功能。当系统进入待机模式后,驱动芯片和液晶板的总耗电量小于1μA(几乎为零)。
4 软件设计
4.1 电源管理软件的低功耗设计
要想最大效率地利用电池的能量,延长便携式仪表的电池使用寿命,除了选择低电压低功耗器件为硬件基础外,还必须编制具有灵活的电源管理软件,具体措施如下:
(1)由于微处理器内部的基本模块都有各自的电源开关,只有在使用时才打开。因此,进行温度采样时,可通过软件启动定时器Timer_a,开始捕获;采样结束时,再通过软件关闭定时器,禁止捕获;
(2)由于温度属时慢变参数,因此,温度的采集应采用定时中断方式。即在CPU初始化后立即进入低功耗模式,等待中断。定时器中断将再次唤醒CPU进行温度采集和数据处理,并将此时的温度值存人FLASH Ram中,处理完毕后,CPU再次进入低功耗模式;
(3)对CPU状态进行智能化管理。MSP430单片机具有LMPO~LMP4等5种低功耗模式(LMP的序号越高,该模式下的功耗越低)。不采集 温度时,可使CPU处于低功耗模式LMP3(V为3 V,f为32768 Hz),该模式下的工作电流小于2μA。从低功耗模式到工作模式的转换时间小于6μs。
(4)为了降低电流消耗,可在温度检测电路里用3根I/O口线。并使其平时均处于高阻态,而在数据采集过程中,再通过CPU将相应的口线切换到输出状态。
4.2软件程序
本系统软件由主程序、定时中断服务程序和一系列子程序组成。主程序用于完成单片机的初始化以及等待中断。定时中断服务程序包括测量用的定时充电程 序、数据处理子程序以及放电时间测量程序等。其放电时间测量程序流程图如图3所示。被测电阻的测量精度取决于放电时间的测量周期数,例如,当所需分辨率为 10位时,可设置计数器的最大值为1024个测量周期。
MSP430的工作模式可通过模块的智能化运行管理软件和CPU的优化状态组合来支持超低功耗的各种要求。主要是使系统中的单片机工作时处于激活模式,工作间隙则将其设定为低功耗模式,以降低系统功耗。
5 系统测试
5.1测试方法
根据环境要求,对本系统的测试可反复在不同温度环境中进行,同时根据数据误差调整软件和硬件来进行校准。温度可采用按度对照校准的方法来测量。
5.2误差分析
本测试所使用的仪器包括计算机、EZ430编程器、示波器、精密数字电流表、数字万用表、温度计和秒表等。
在超低功耗的实现上,可采用极低功耗的组件,并控制漏电流的产生。使微处理器工作在较低频率和使用待机模式,并可优化软件运行,以使整机功耗完全达到最低。
6 结束语
本电路的优点是分辨率高、功耗低。整个电路的特点是外围组件和可调组件少,工作稳定可靠。该系统设计思想对超低功耗、微型便携式的智能化检测仪表的研究和开发具有一定的参考价值。