ROHM确立可以更大程度激发GaN器件性能的“超高速驱动控制”IC 技术
2023-03-07 来源:EEWORLD
ROHM确立可以更大程度激发GaN器件性能的“超高速驱动控制”IC 技术
将GaN器件与控制IC相结合,助力电源应用进一步节能和小型化
全球知名半导体制造商ROHM(总部位于日本京都市)确立了一项超高速驱动控制IC技术,利用该技术可更大程度地激发出GaN等高速开关器件的性能。
近年来,GaN器件因其具有高速开关的特性优势而被广泛采用,然而,如何提高控制IC(负责GaN器件的驱动控制)的速度已成为亟需解决的课题。
在这种背景下,ROHM进一步改进了在电源IC领域确立的超高速脉冲控制技术“Nano Pulse Control™”,成功地将控制脉冲宽度从以往的9ns提升至2ns,达到业界超高水平。通过将该技术应用在控制IC中,又成功地确立了可更大程度激发GaN器件性能的超高速驱动控制IC技术。
目前,ROHM正在推动应用该技术的控制IC产品转化工作,计划在2023年下半年开始提供100V输入单通道DC-DC控制器的样品。通过将其与ROHM的“EcoGaN™系列”等GaN器件相结合,将会为基站、数据中心、FA设备和无人机等众多应用实现显著节能和小型化做出贡献。
未来,ROHM将继续以其擅长的模拟技术为中心,追求应用的易用性,积极开发解决社会课题的产品。
日本大阪大学 研究生院工学研究科 森 勇介 教授表示:“多年来,GaN作为能够实现节能的功率半导体材料一直备受期待,但这种材料在品质和成本等方面还存在诸多问题。在这种背景下,ROHM建立了高可靠性GaN器件的量产体系,并积极推动能够更大程度地发挥出GaN器件性能的控制IC开发。这对于促进GaN器件的普及而言,可以说是非常重要的一大步。要想真正发挥出功率半导体的性能,就需要将晶圆、元器件、控制IC、模块等多种技术有机结合起来。在这方面,日本有包括ROHM在内的很多极具影响力的企业。从我们正在研究的GaN-on-GaN晶圆技术到ROHM正在研究的元器件、控制IC和模块,需要整个国家通力合作,为实现无碳社会贡献力量。”
<背景>
在追求电源电路小型化时,需要通过高频开关来减小外围元器件的尺寸,而这就需要能够充分激发出GaN等高速开关器件驱动性能的控制IC。这次,为了实现包含外围元器件的解决方案,ROHM确立了非常适合GaN器件的超高速驱动控制IC技术,该技术中还融入了ROHM引以为豪的模拟电源技术之一“Nano Pulse Control™”技术 。
<控制IC技术详情>
该技术采用了在ROHM的垂直统合型生产体制下融合了电路设计、工艺和布局三大模拟技术而实现的“Nano Pulse Control™”技术。通过采用自有的电路结构,将控制IC的最小控制脉宽由以往的9ns大幅提升至2ns,这使得以48V和24V应用为主的应用,仅需1枚电源IC即可完成从高电压到低电压的降压转换工作(从最高60V到0.6V)。该技术非常适合与GaN器件相结合,实现高频开关,从而助力外围元器件小型化,对采用了该技术的DC-DC控制器IC(开发中)和采用了EcoGaN™技术的电源电路进行比较时,后者的安装面积比采用普通产品时可减少86%。
<关于Nano Pulse Control™>
一种超高速脉冲控制技术。实现了纳秒(ns)级的开关导通时间(电源IC的控制脉冲宽度),使以往无法实现的高电压到低电压的转换成为可能。
<关于EcoGaN™>
EcoGaN™是通过更大程度地优化GaN的低导通电阻和高速开关性能,助力应用产品进一步节能和小型化的ROHM GaN器件,该系列产品有助于应用产品进一步降低功耗、实现外围元器件的小型化、减少设计工时和元器件数量等。
*EcoGaN™ 和 Nano Pulse Control™ 是ROHM Co., Ltd.的商标或注册商标。
<森 勇介 教授简介>
曾任日本大阪大学研究生院工学研究科副教授,于2007年成为该学科教授,任教至今。多年从事GaN晶体生长等技术的开发与研究,并确立了晶体量产技术。目前,为了推动GaN器件的应用与普及,除了致力于提高GaN-on-GaN晶圆技术(即在GaN衬底上形成GaN晶体管)的品质外,还与多家企业开展产学合作,属于GaN技术应用研究的权威人物。
2008年获得日本文部科学大臣表彰科学技术奖,近年来,于2022年获得国家发明表彰“未来创造发明鼓励奖”、2022年第13届化合物半导体电子学成就奖(赤崎勇奖)等。
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- ROHM开发出实现业界超低损耗和超高短路耐受能力的1200V IGBT
- 罗姆即将亮相2024慕尼黑电子展:赋能增长,激发创新
- 科索3.5kW输出AC-DC电源单元“HFA/HCA系列”采用罗姆的EcoSiC™
- 电装和罗姆就开始考虑在半导体领域 建立战略合作伙伴关系事宜达成协议
- 贸泽开售针对智能手机和超小型物联网设备优化的 ROHM TLR377GYZ CMOS运算放大器
- 超小型VCSEL*反射式光电传感器的应用潜力
- ROHM开发出1kW级高输出功率红外激光二极管“RLD8BQAB3”!
- 新型二合一 SiC封装模块“TRCDRIVE pack™”丨罗姆确认申报2024金辑奖
- 罗姆与联合汽车电子签署SiC功率元器件长期供货协议
- 华为固态电池新突破:硫化物电解质专利发布,破解液态电池衰减难题
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- 48V 技术的魅力:系统级应用中的重要性、优势与关键要素
- 如何选择电压基准源
- 南芯科技推出面向储能市场的80V高效同步双向升降压充电芯片
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 恩智浦发布MC33777,革新电动汽车电池组监测技术
- 废旧锂离子电池回收取得重要突破
- Jolt Capital收购并投资Dolphin Design 精心打造的混合信号IP业务
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样