基于MEMS的LED芯片封装光学特性分析
2014-08-22 来源:互联网
本文提出了一种基于MEMS的LED芯片封装技术,利用体硅工艺在硅基上形成的凹槽作为封装led芯片的反射腔。分析了反射腔对LED的发光强度和光束性能的影响,分析结果表明该反射腔可以提高芯片的发光效率和光束性能;讨论了反射腔的结构参数与芯片发光效率之间的关系。最后设计r封装的工艺流程。利用该封装结构可以降低芯片的封装尺,提高器件的发光效率和散热特性。
图1 LED T1或T1—3/4
经过几十年的发展,LED性能已经得到了极大的进步,由于它具有发光效率高,体积小,寿命长等优点,将成为新一代照明光源,被人们公认为是继白炽灯之后照明领域的又一次重大革命。目前LED已经在照明、装饰、显示和汽车等诸多领域得到了广泛的应用,而其应用前景和应用领域还在被不断的开发和扩展。在LED的产业链中,封装是十分重要的一个部分,它决定着LED芯片的光、热、寿命和二次配光等特性。LED最初的封装形式主要是如图1的T1和T1—3/4。随着芯片发光功率的提高,以及应用领域的扩大,其原有的封装结构无论是在散热,还是在集成度上都不再挠满足LED不断发展的需要。伴随着电子封装技术的不断发展,表面贴装(SMT)封装技术开始成为LED封装技术的主流,基于SMT技术封装的器件称为SMD,表面贴装的SMD—LED在集成度、散热性和可靠性E都比以前的封装结构有很大的提高。
(a)基于导线架的LED封装 (b)LED芯片贴PEB板
图2 SMD—LED
目前基于SMT的LED封装主要用导线架(leadfame)和模塑料(mouldingcompound)形成的结构作为芯片的封装基体,导线架起热传导和电极引线的作用:而模塑料作为支撑结构,其结构如图2(a)所示。由于这种结构比较复杂,限制了它不能做得很小。因此对更小尺寸的封装(如、SMD0603,SMl30402),通常是将LED芯片直接贴装在PEB板上.如图2(b)。由于这种结构没有反射腔,其发光效率很低;该结构存在的另一个问题是PCB的导热性能很差,例如FR4的导热系数只有0.3W/k。这将会限制高亮度LED的工作功率。而随着电子产品集成度的不断提高,对小尺寸LED的封装产晶需要越来越大。因此本文提出了一种结合MEMS工艺的硅基LEO芯片封装技术。它具有封装尺寸小的优点,同时解决了直接将芯片贴装在PEB上而引起的发光效率低、热阻高的缺点。文章首先讨论了反射腔对LED芯片发光效率的影响,对反射腔的结构参数与LED发光效率之问的关系进行了详细的分析,最后设计了封装工艺流程。
硅基封装的LED光学特性分析
MEMS技术是随着半导体和微电子技术的发展丽发展起来的一项新兴的细微加工技术,加工尺寸从毫米到微米数量级,甚至亚微米的微小尺寸:其加T艺主要分为表面工艺和体工艺。基于硅基的体工艺又称为体硅工艺,体硅工艺呵以在硅基体上形成高深宽比的凹稽。由于MEMS的加工尺寸很小,因此利用该技术形成的微小凹槽作为LED芯片封装的反射腔(如图3),将会克服目前LED芯片直接封装在PCB板上而引起发光效率低的问题;同时由于硅具有良好的导热特性,因此可以降低目前封装中热阻高的问题,从而提高LED芯片的发光效率和可靠性。图4(a)和(b)给出了当LED芯片直接贴装在PCB板上和贴装在有凹槽的硅基上的发光特性。从圈中可以看出,LED贴装在带有凹槽的硅基上以后其发出光的发散性能得到了很大的改善,LED的发光强度提高了75%以上。
图4 基于PCB板和硅基封装LED光强分布
凹槽形成的反射腔对IED的发光特性起着显著的改善,不同的反射腔形状对LED的发光特性有币同的影响。对图3分析可得,反射腔的形状主要由删槽的开口尺寸L,凹槽的深度h和发射角θ决定。利用TIacepro软件建立如图3所示的模型,分别改变L、h和θ的值,求出各自对应情况下LED的光强,就可以分析出反射腔的形状与LED发光特性之间的关系。进而为凹槽的足寸设计提供理论上的指导。
图5 LED光强与反射角之间的关系
图5为LED发射光与反射的反射角θ之间的关系,从图中可看出当反射角为52度的时候反射光强取得最大。从理论上讲,硅凹槽反射角应该设计为52度。但是,考虑到对(100)硅进行腐蚀的时候,其(111)面和(100)面会自动形成一个54.7度的角,而通过仿真分析结果可以计算。当反射角为54.7度的时候。LED的反射光强只比反射角为52度的时候小12%,而且光强分布也比较接近。因此在腐蚀凹槽的时候可以直接采用硅的(100)面和(111)面形成角度作为反射角,这可以极大的简化加工工艺,降低制造成本,而且对LED光强的影响也不是很大。
下一篇:色温可调LED的封装与性能
- Melexis推动行业变革:汽车照明LED驱动芯片实现超小型化
- BOE(京东方)独供明基首款玻璃基主动式Mini LED显示器 携手行业领先客户共筑MLED产业高地
- BOE(京东方)携手创维推出行业首款主动式玻璃基Mini LED显示器
- LED行业首个全流程柔性智能工厂!极智嘉联合磅旗赋能广东洲明智慧物流升级
- LED驱动IC涨价加剧行业两极分化,16家产业链厂商的IPO获受理
- 如何解决LED行业基波功率因数测试难点
- 苹果提交 micro LED 技术相关专利,或解决行业难题
- LED行业基波功率因数测试难点如何破解
- 三安起诉华灿背后:专利或成了LED行业竞争“新武器”
- 崧盛电子IPO申请获受理 创业板或增LED驱动电源行业新兵
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- 华为固态电池新突破:硫化物电解质专利发布,破解液态电池衰减难题
- 48V 技术的魅力:系统级应用中的重要性、优势与关键要素
- 如何选择电压基准源
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 废旧锂离子电池回收取得重要突破
- 南芯科技推出面向储能市场的80V高效同步双向升降压充电芯片
- 强茂SGT MOSFET第一代系列:创新槽沟技术 车规级60 V N通道 突破车用电子的高效表现
- 恩智浦发布MC33777,革新电动汽车电池组监测技术
- Bourns 推出两款厚膜电阻系列,具备高功率耗散能力, 采用紧凑型 TO-220 和 DPAK 封装设计
- Bourns 全新高脉冲制动电阻系列问世,展现卓越能量消散能力
- Nexperia推出新款120 V/4 A半桥栅极驱动器,进一步提高工业和汽车应用的鲁棒性和效率
- 英飞凌推出高效率、高功率密度的新一代氮化镓功率分立器件
- Vishay 新款150 V MOSFET具备业界领先的功率损耗性能
- 强茂SGT MOSFET第一代系列:创新槽沟技术 车规级60 V N通道 突破车用电子的高效表现
- 面向车载应用的 DC/DC 电源
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox