智能点阵显示屏HCMS-29xx/39xx及其应用
2007-03-09
摘要:HCMS-29xx/HCMS-39xx系列是安捷伦科技公司推出的智能LED点阵显示屏,它采用CMOS工艺制造,能够直接与微处理器和微控制器相连而无需接口电路和元件,可广泛用于医疗设备、打印机、扫描仪、复印机和消费类电子。文中介绍了HCMS-29xx/HCMS-39xx系列产品的引脚功能、内部结构和操作时序,给出了HCMS-2912与8751H的接口电路。
关键词:LED点阵显示屏 HCMS-29xx/HCMS-39xx
1 概述
安捷伦科技公司推出的智能LED点阵显示屏HCMS-29xx/39xx系列产品为5%26;#215;7点阵形式,显示屏中的每个点都可以单独编程。它不但可以显示所有的ASCII字符和Katakana字符,而且可以显示用户自定义图形。
该产品采用低功耗的CMOS工艺。它与TTL电平兼容,可以直接与微处理器和微控制器相连而无需接口电路和元件。该产品有红色、橙色、绿色等标准模块,字符高度有0.15英寸和0.20英寸两种规格,可显示四个或八个字符,该显示屏的特点是可以在水平和垂直方向灵活组合,如两块1%26;#215;4可组成1%26;#215;8或2%26;#215;4的显示模块。显示屏内部有CMOS集成电路,数据采用串行输入方式,能支持字体编程、黑屏、多级亮度调节、睡眠模式等多种功能,可以在需要颜色选择和光线较强的场合取代液晶显示器。
在该显示产品中,HCMS-29xx系列采用5V电源供电,HCMS-39xx系列则采用3.3V电源供电,因此可以直接和许多3.3V供电的微处理器和微控制器相连,而不需要单独的5V电源和接口元件,此外,这两个系列的封装和引脚排列也相同。
图1
2 内部结构和工作原理
2.1 内部结构
该系列产品的配置字符为5%26;#215;7点阵形式,每片IC上4个字符为一组。HCMS-29xx/39xx的内部结构框图如图1所示,图中每片IC主要包括160位移位寄存器(点阵寄存器)、两个带7位控制字的控制寄存器和刷新电路等。
2.2 引脚说明
2.3 工作原理
a.复位
RST引脚的作用是初始化控制寄存器(将控制寄存器所有位均置为低电平)和置显示为睡眠模式。上电或复位后,点阵寄存器的内容是随机的,然后,RST将显示电路置为睡眠模式并显示黑屏。同时在RST的作用下使控制寄存器和控制字清零。
b.点阵寄存器
点阵寄存器可保存LED将要显示的图形数据。首先,RS置低以选择点阵寄存器,接着将CS也置为低。然后在每一个时钟上升沿将数据从DIN移入点阵寄存器,移入的数据是高电平时,相应的点被点亮。当所有160位都被移入时,CE置高。
当CLK下降沿到来时,新的数据将被锁存到显示点阵驱动电路。待前面的数据显示完成后,再将数据装载进点阵寄存器。图2是其时序图。
应当说明的是:当CE为高且CLK为低时,数据将被复制到控制寄存器或点阵锁存器中锁存。
c.像素图
在4字符的显示屏中,160位二进制数可由20列8行的矩阵构成。每个字符一般被定义成5%26;#215;8的点阵,但8行中只有7行有LED点,第0行实际上从不显示,见图3。字符一般通过顺序方式载入,首先被载入的是最左边的数据,最后被载入的是最右边的数据。
d.控制寄存器
用户可以用软件编程的方法来修改控制寄存器的内容。该控制寄存器由两个独立的7位控制字(控制字0和控制字1)组成,由寄存器的D7位决定选择哪一个控制寄存器,D7位为L时选择控制字0,D7位为H时选择控制字1。控制字0的D0~D3位通过脉宽调制(PWM)来调整显示亮度,D4~D5位通过控制像素的峰值电流来调整显示亮度,D6位选择正常操作模式(D6=H)或睡眠模式(D6=L)。控制字1有两个功能;D0位用于选择串行/并行数据输出模式;D1位用于外部振荡器前定标。
图4
3 应用电路
图4是两个水平排列的HCMS-2912智能点阵显示屏与INTEL 8751H微处理器的接口电路。每片HCMS-2912可以显示8个字符,两片显示屏组合起来可显示16个字符。只要将第一片IC的DATAOUT连接到第二片IC的DATAIN,然后将其它控制功能的电源引脚直接连在一起就可以了。而且只需在硬件和软件配置上进行很小的修改,任一款HCMS-29xx/39xx都可由这个控制器驱动。
4 结束语
随着医疗设备、打印机、扫描仪、复印机等电子产品销量的增加,市场需要一种能够兼容3.3V微处理器以及数字电路的显示面板。HCMS-39xx系列智能点阵显示屏恰好可满足这个需求。采用3.3V工作电压能够省去一个独立的5V电源;同时,HCMS-39xx由于采用体积更小、成本更低的接口器件,从而能够简化电路设计,节约显示板面积,并可降低工作电流和功耗,因此,该系列有着5V电源芯片不能比拟的优势。
进入电源管理查看更多内容>>
- 华为固态电池新突破:硫化物电解质专利发布,破解液态电池衰减难题
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- 48V 技术的魅力:系统级应用中的重要性、优势与关键要素
- 如何选择电压基准源
- 南芯科技推出面向储能市场的80V高效同步双向升降压充电芯片
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 恩智浦发布MC33777,革新电动汽车电池组监测技术
- 废旧锂离子电池回收取得重要突破
- Jolt Capital收购并投资Dolphin Design 精心打造的混合信号IP业务
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
热门新闻
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
最新频道
相关电子头条文章