功率型LED瞬态温度场及热应力分布的研究
2011-07-21 来源:中国LED网
led 因具有无污染、高效率、寿命长、体积小等优点,成为最有前途的照明光源。随着功率型LED在照明领域应用的不断发展,对LED 小型化、高功率化的要求越来越迫切,低热阻、散热良好及低应力的封装结构是功率型LED 器件的技术关键。现有研究结果表明,键合材料对LED 封装热阻影响最大,提高功率型LED 散热能力的关键是减小键合层的热阻。键合材料导热系数较低,固化后材料间的接触热阻很高,导致温度梯度大,将产生很大的热应力;另外,键合材料与芯片、热沉间的热膨胀系数(CTE)差异较大,当膨胀受到外部约束时也会产生较大热应力。封装过程产生的热应力不仅影响LED 器件的物理稳定性,还会使封装硅胶透镜的折射率发生改变,从而对LED 的出光效率和光场分布造成影响。热应力大小已成为*价功率型LED 可靠性的主要指标之一。
目前,国内外已经对LED 热应力分布做了相关研究。2006 年,Jianzhen Hu 等人对Ga-N 基LED 热应力分布进行了有限元模拟仿真,结果表明LED 封装的最大热应力集中在芯片和键合层接触地方的边缘处;2007 年,于新刚等人分析了基板材料导热系数对LED 结温和最大热应力的影响;2008 年,戴炜峰等人利用有限元模拟了大功率LED 的瞬态温度场和应力场的变化情况。但上述研究中都将LED 温度场和应力场分别进行了模拟分析,而没有分析温度场对应力场的对应变化关系,也未分析应力与应变的变化趋势,而且从公开的文献来看,并未发现任何有关研究键合层材料这个关键因素对LED 应力场分布的影响。
论文以热应力理论为依据,模拟了LED 瞬态温度场和应力场分布的变化,并与实测的LED 基板底部中心温度变化情况进行了对比研究;并分析了瞬态温度场和应力场的对应变化关系;模拟研究了键合层材料导热系数对LED 结温和最大等效应力的影响;计算了基板顶面平行于X 轴路径上热应力、应变及剪应力的变化趋势,论文的研究对LED 的封装热设计具有意义。
1 热应力理论模型及物理模型
根据传热理论,具有内热源的大功率LED 瞬态温度场分布应该满足如下方程:
其中:T 为温度;t 为时间;x, y, z 空间三维坐标系;α 为热膨胀系数,α 满足方程:
其中:λ 为导热系数,ρ 为密度,c 为比热容。按照热弹性力学理论,LED 温度梯度导致的热膨胀受到外部约束时产生的瞬态热应力,满足如下方程:
式中:σ 为热应力,α 为热膨胀系数,E 为弹性模量,T 为温度,Tref 为参考温度。由式(3)可以看出,LED 内部温度场是确定热应力大小的前提,而温度分布由热传导微分方程(1)决定,只要给出相应的边界条件即可得到温度场及应力场分布。
以Lumileds 的1 W 功率型LED 器件(如图1)为研究对象,该LED 由透镜、芯片、键合层、热沉、基板及塑封料组成。热量由芯片经键合层传导到热沉,最后由基板与空气进行对流散热。LED 各种封装材料热性能参数如表1 所示。
图1 Lumidleds 1 W LED 模型
表1 LED 封装材料的热力学参数
2 实验、仿真结果与分析
采用自由网格建立LED 有限元模型,热源和键合层采用一级网格,其余采用六级网格。芯片输入热功率按90%计算为0.9 W,环境温度为25℃,生热率4.0×109 W/m3,在LED 模型与空气接触面加载对流系数为10 W/m2.℃,并忽略各层材料中的接触热阻,设定求解时间为600 s,时间子步为20 s,利用有限元软件ANSYS 求解式(1)~(3)即可得到Lumidleds 1 W LED 瞬态温度场分布。
2.1 LED 瞬态温度测试实验与仿真
为了验证有限元仿真的可靠性,设计了一组实验对Lumidleds 1 W LED 进行温度测试,测点为铝基板底面中心,给定电流350 mA,电压3 V,温度测试时间为10 min,每隔10 s 记录一次数据,实验结果表明点亮8 min 后,LED 基本处于热平衡状态,此时基板中心温度为56℃。仿真结果表明此时LED 结温为76.1℃(如图2 所示)。
LED 从开始工作到稳态过程中,基板测点温度变化曲线和仿真结果如图3 所示,升温过程中,实测结果略低于仿真结果,到达稳态后,两则相差2.9℃,验证了有限元分析的可靠性。材料参数的误差、仿真过程中忽略了热辐射以及将对流作为简单边界条件施加是产生误差的主要原因。
- 单相小功率光伏并网系统中,隔离型和非隔离型两种拓扑结构介绍
- 润阳N型组件功率624.9W 组件效率24.2%
- 关于PWM型D类音频功率放大器的设计
- 掌握技巧,游刃有余!R型变压器功率计算窍门大公开!
- R型变压器有功功率究竟是怎样产生的?
- 【大功率车灯照明驱动方案】输入8-100V 降压型LED恒流驱动芯片FP7125
- 罗德与施瓦茨推出新型R&S NPA系列紧凑型功率分析仪可满足所有功率测量要求
- TDK 推出增强型嵌入式电机控制器,内存、功率和可靠性均有 提升
- Microchip推出AVR® DU系列USB单片机,支持增强型代码保护和高达15W 的 功率输出
- 东芝推出新一代DTMOSVI高速二极管型功率MOSFET,助力提高电源效率
- 华为固态电池新突破:硫化物电解质专利发布,破解液态电池衰减难题
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- 48V 技术的魅力:系统级应用中的重要性、优势与关键要素
- 如何选择电压基准源
- 南芯科技推出面向储能市场的80V高效同步双向升降压充电芯片
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 恩智浦发布MC33777,革新电动汽车电池组监测技术
- 废旧锂离子电池回收取得重要突破
- Jolt Capital收购并投资Dolphin Design 精心打造的混合信号IP业务
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样