开关电源知识2

tonytong   2010-5-22 23:55 楼主
  开关电源 测试方法
  一. 耐电压
  (HI.POT,ELECTRIC STRENGTH ,DIELECTRIC VOLTAGE WITHSTAND)KV
  1.1 定义:于指定的端子间,例如:I/P-O/P,I/P-FG,O/P-FG间,可耐交流之有效值,漏电流一般可容许10毫安,时间1分钟。
  1.2 测试条件:Ta:25℃;RH:室内湿度。 开关电源
1.3 测试回路:
  1.4 说明:
  1.4.1 耐压测试主要为防止电气破坏,经由输入串入之高压,影响使用者安全。
  1.4.2 测试时电压必须由0V开始调升,并于1分钟内调至最高点。
  1.4.2 放电时必须注意测试器之Timer设定,于OFF前将电压调回 0V。
  1.4.3 安规认证测试时,变压器需另行加测,室内 ,温度25℃,RH:95℃,48HR,后测试变压器初/次级与初级/CORE。
  1.4.5生产线测试时间为1秒钟。
  二.纹波噪声(涟波杂讯电压)
  (Ripple & Noise)%,mv
  2.1定义:
  直流输出电压上重叠之交流电压成份最大值(P-P)或有效值。
  2.2测试条件:
  I/P: Nominal
   开关电源伯特图
O/P : Full Load
  Ta : 25℃
  2.3测试回路:
  2.4测试波形:
  2.5说明:
  2.5.1示波器之GND线愈短愈好,测试线得远离PUS。
  2.5.2使用1:1之Probe。
  2.5.3 Scope之BW一般设定于20MHz,但是对于目前的网络产品测试纹波噪声最好将BW设为最大。
  2.5.4 Noise与使用仪器,环境差异极大,因此测试必须表明测试地点。
  2.5.5测试纹波噪声以不超过原规格值 +1%Vo。
  三.漏电流(洩漏电流)
  (Leakage Current)mA
  3.1定义:
  输入一机壳间流通之电流(机壳必须为接大地时)。
  3.2测试条件:
  I/P:Vin max.×1.06(TUV)/60Hz
  Vin max.(UL1012)/60Hz
  O/P: No Load/Full Load
  Ta: 25 ℃
  3.3测试回路:
  3.4说明:
  3.4.1 L,N均需测。
  3.4.2UL1012 R值为1K5。
  TUV R值为2K/0。15uF。
  3.4.3漏电流规格TUV:3。5mA,UL1012:5mA。 开关电源电路示意图
四.温度测试
  (Temperature Test)
  4.1定义:
  温度测试指PSU于正常工作下,其零件或Case温度不得超出其材质规
  格或规格定值。
  4.2测试条件:
  I/P: Nominal
  O/P: Full Load
  Ta : 25℃
  4.3测试方法:
  4.3.1将Thermo Coupler(TYPE K)稳固的固定于量测的物体上
  (速干、Tape或焊接方式)。
  4.3.2 Thermo Coupler于末端绞三圈后焊成一球状测试。
  4.3.3我们一般用点温计测量。
  4.4测试零件:
  热源及易受热源影响部分
  例如:输入端子、Fuse、输入电容、输入电感、滤波电容、桥整、热
  敏、突波吸收器、输出电容、输出电容、输出电感、变压器、铁芯、
  绕线、散热片、大功率半导体、Case、热源零件下之P.C.B.……。
  4.5零件温度限制:
  4.5.1零件上有标示温度者,以标示之温度为基准。
  4.5.2其他未标示温度之零件,温度不超过P.C.B.之耐温。
  4.5.3电感显示个别申请安规者,温升限制65℃Max(UL1012),75℃
  Max(TUV)。
  五.输入电压调节率
  (Line Regulation), %
  5.1定义:
  输入电压在额定范围内变化时,输出电压之变化率。
  Vmax-Vnor
  Line Regulation(+)=------------------
  Vnor
  Vnor-Vmin
  Line Regulation(-)=------------------ 开关电源适配器
Vnor
  Vmax-Vmin
  Line Regulation=----------------
  Vnor
  Vnor:输入电压为常态值,输出为满载时之输出电压。
  Vmax:输入电压变化时之最高输出电压。
  Vmin:输入电压变化时之最低输出电压。
  5.2测试条件:
  I/P:Min./Nominal/Max
  O/P:Full Load
  Ta:25℃
  5.3测试回路:
  5.4说明:
  Line Regulation 亦可直接Vmax-Vnor与Vmin-Vnor之±最大
  值以mV表示,再配合Tolerance%表示。
  六.负载调节率
  (Load Regulation)%
  5.1定义:
  输出电流于额定范围内变化(静态)时,输出电压之变化率。
  |Vminl-Vcent|
  Line Regulation(+)=------------------×100%
  Vcent
  |Vcent-VfL|
  Line Regulation(-)=------------------×100%
  Vcent
  |VminL-VfL|
  Line Regulation(%)=----------------×100%
  Vcent
  VmilL:最小负载时之输出电压
  VfL:满载时之输出电压
  Vcent:半载时之输出电压
  6.2测试条件:
  I/P:Nominal
  O/P:Min./Half/Full Load
  Ta:25℃ 开关电源外壳
6.3测试回路:
  6.4Load Regulation亦可直接Vmin.L-Vcent与Vcent-Vmax.之±最大
  值以mV表示,再配合Tolerance%表示。
 提高开关电源待机效率的方法  (一)切断启动电阻
  对于反激式电源,启动后控制芯片由辅助绕组供电,启动电阻上压降为300V左右。设启动电阻取值为47kΩ,消耗功率将近2W。要改善待机效率,必须在启动后将该电阻通道切断。TOPSWITCH,ICE2DS02G内部设有专门的启动电路,可在启动后关闭该电阻。若控制器没有专门启动电路,也可在启动电阻串接电容,其启动后的损耗可逐渐下降至零。缺点是电源不能自重启,只有断开输入电压,使电容放电后才能再次启动电路。
  (二)降低时钟频率
  时钟频率可平滑下降或突降。平滑下降就是当反馈量超过某一阈值,通过特定模块,实现时钟频率的线性下降。
  (三)切换工作模式
  1.QR→PWM对于工作在高频工作模式的开关电源,在待机时切换至低频工作模式可减小待机损耗。例如,对于准谐振式开关电源(工作频率为几百kHz到几MHz),可在待机时切换至低频的脉宽调制控制模式PWM(几十kHz)。
  IRIS40xx芯片就是通过QR与PWM切换来提高待机效率的。当电源处于轻载和待机时候,辅助绕组电压较小,Q1关断,谐振信号不能传输至FB端,FB电压小于芯片内部的一个门限电压,不能触发准谐振模式,电路则工作在更低频的脉宽调制控制模式。
  2.PWM→PFM
  对于额定功率时工作在PWM模式的开关电源,也可以通过切换至PFM模式提高待机效率,即固定开通时间,调节关断时间,负载越低,关断时间越长,工作频率也越低。将待机信号加在其PW/引脚上,在额定负载条件下,该引脚为高电平,电路工作在PWM模式,当负载低于某个阈值时,该引脚被拉为低电平,电路工作在PFM模式。实现PWM和PFM的切换,也就提高了轻载和待机状态时的电源效率。
  通过降低时钟频率和切换工作模式实现降低待机工作频率,提高待机效率,可保持控制器一直在运作,在整个负载范围中,输出都能被妥善的调节。即使负载从零激增至满负载的情况下,能够快速反应,反之亦然。输出电压降和过冲值都保持在允许范围内。
  (四)可控脉冲模式(BurstMode)
  可控脉冲模式,也可称为跳周期控制模式(SkipCycleMode)是指当处于轻载或待机条件时,由周期比PWM控制器时钟周期大的信号控制电路某一环节,使得PWM的输出脉冲周期性的有效或失效,这样即可实现恒定频率下通过减小开关次数,增大占空比来提高轻载和待机的效率。该信号可以加在反馈通道,PWM信号输出通道,PWM芯片的使能引脚(如LM2618,L6565)或者是芯片内部模块(如NCP1200,FSD200,L6565和TinySwitch系列芯片)。 开关电源
开关电源用途
  开关电源[1]产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热等领域。

开关电源[2]的发展和趋势  1955年美国罗耶(GH.Roger)发明的自激振荡推挽晶体管单变压器直流变换器,是实现高频转换控制电路的开端,1957年美国查赛(Jen Sen)发明了自激式推挽双变压器,1964年美国科学家们提出取消工频变压器的串联开关电源的设想,这对电源向体积和重量的下降获得了一条根本的途径。到了1969年由于大功率硅晶体管的耐压提高,二极管反向恢复时间的缩短等元器件改善,终于做成了25千赫的开关电源。
  目前,开关电源以小型、轻量和高效率的特点被广泛应用于以电子计算机为主导的各种终端设备、通信设备等几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。目前市场上出售的开关电源中采用双极性晶体管制成的100kHz、用MOS-FET制成的500kHz电源,虽已实用化,但其频率有待进一步提高。要提高开关频率,就要减少开关损耗,而要减少开关损耗,就需要有高速开关元器件。然而,开关速度提高后,会受电路中分布电感和电容或二极管中存储电荷的影响而产生浪涌或噪声。这样,不仅会影响周围电子设备,还会大大降低电源本身的可靠性。其中,为防止随开关启-闭所发生的电压浪涌,可采用R-C或L-C缓冲器,而对由二极管存储电荷所致的电流浪涌可采用非晶态等磁芯制成的磁缓冲器。不过,对1MHz以上的高频,要采用谐振电路,以使开关上的电压或通过开关的电流呈正弦波,这样既可减少开关损耗,同时也可控制浪涌的发生。这种开关方式称为谐振式开关。目前对这种开关电源 开关电源
的研究很活跃,因为采用这种方式不需要大幅度提高开关速度就可以在理论上把开关损耗降到零,而且噪声也小,可望成为开关电源高频化的一种主要方式。

回复评论

暂无评论,赶紧抢沙发吧
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 京公网安备 11010802033920号
    写回复