[分享] 解析物联网的几个关键技术和应用场景,看完秒懂5G

Jacktang   2020-4-1 23:15 楼主

     未来的网络将会面对:1000倍的数据容量增长,10到100倍的无线设备连接,10到100倍的用户速率需求,10倍长的电池续航时间需求等等。坦白的讲,4G网络无法满足这些需求,所以5G就必须登场。

    但是,5G不是一次革命。5G是4G的延续,我相信5G在核心网部分不会有太大的变动,5G的关键技术集中在无线部分。虽然5G最终将采用何种技术,目前还没有定论。不过,综合各大高端论坛讨论的焦点,我今天收集了8大关键技术。当然,应该远不止这些。

八项关键技术

1、非正交多址接入技术 (Non-Orthogonal Multiple Access,NOMA)

     我们知道3G采用直接序列码分多址(Direct Sequence CDMA ,DS-CDMA)技术,手机接收端使用Rake接收器,由于其非正交特性,就得使用快速功率控制(Fast transmission power control ,TPC)来解决手机和小区之间的远-近问题。

       而4G网络则采用正交频分多址(OFDM)技术,OFDM不但可以克服多径干扰问题,而且和MIMO技术配合,极大的提高了数据速率。

由于多用户正交,手机和小区之间就不存在远-近问题,快速功率控制就被舍弃,而采用AMC(自适应编码)的方法来实现链路自适应。

NOMA希望实现的是,重拾3G时代的非正交多用户复用原理,并将之融合于现在的4G OFDM技术之中。

从2G,3G到4G,多用户复用技术无非就是在时域、频域、码域上做文章,而NOMA在OFDM的基础上增加了一个维度——功率域。

新增这个功率域的目的是,利用每个用户不同的路径损耗来实现多用户复用。

image-20200401231602-1.png
实现多用户在功率域的复用,需要在接收端加装一个SIC(持续干扰消除),通过这个干扰消除器,加上信道编码(如Turbo code或低密度奇偶校验码(LDPC)等),就可以在接收端区分出不同用户的信号。

image-20200401231620-2.png
2、FBMC(滤波组多载波技术)

在OFDM系统中,各个子载波在时域相互正交,它们的频谱相互重叠,因而具有较高的频谱利用率。OFDM技术一般应用在无线系统的数据传输中,在OFDM系统中,由于无线信道的多径效应,从而使符号间产生干扰。

为了消除符号问干扰(ISl),在符号间插入保护间隔。插入保护间隔的一般方法是符号间置零,即发送第一个符号后停留一段时间(不发送任何信息),接下来再发送第二个符号。在OFDM系统中,这样虽然减弱或消除了符号间干扰,由于破坏了子载波间的正交性,从而导致了子载波之间的干扰(ICI)。

因此,这种方法在OFDM系统中不能采用。在OFDM系统中,为了既可以消除ISI,又可以消除ICI,通常保护间隔是由CP(Cycle Prefix ,循环前缀来)充当。CP是系统开销,不传输有效数据,从而降低了频谱效率。

image-20200401231645-3.png

 
而FBMC利用一组不交叠的带限子载波实现多载波传输,FMC对于频偏引起的载波间干扰非常小,不需要CP(循环前缀),较大的提高了频率效率。

3、毫米波(millimetre waves ,mmWaves)

什么叫毫米波?频率30GHz到300GHz,波长范围10到1毫米。

由于足够量的可用带宽,较高的天线增益,毫米波技术可以支持超高速的传输率,且波束窄,灵活可控,可以连接大量设备。以下图为例:

  image-20200401231704-4.png
蓝色手机处于4G小区覆盖边缘,信号较差,且有建筑物(房子)阻挡,此时,就可以通过毫米波传输,绕过建筑物阻挡,实现高速传输。

同样,粉色手机同样可以使用毫米波实现与4G小区的连接,且不会产生干扰。

当然,由于绿色手机距离4G小区较近,可以直接和4G小区连接。

未来毫米波也会成为5G的关键技术,但因为毫米波频率太高,导致信道太“直”,移动起来不容易对准,另外5G时代的入网设备数量会呈爆发式增长,传统的宏基站变成站点更多密度更大的微基站,是解决这两个问题的有效方法。基站微型化则布设密度会加大。为避免基站之间的频谱互扰,基站的辐射功率谱就会降低,这样手机的辐射小了,待机也长了。

4、大规模MIMO技术(3D /Massive MIMO)

MIMO技术已经广泛应用于WIFI、LTE等。理论上,天线越多,频谱效率和传输可靠性就越高。

大规模MIMO技术可以由一些并不昂贵的低功耗的天线组件来实现,为实现在高频段上进行移动通信提供了广阔的前景,它可以成倍提升无线频谱效率,增强网络覆盖和系统容量,帮助运营商最大限度利用已有站址和频谱资源。

我们以一个20平方厘米的天线物理平面为例,如果这些天线以半波长的间距排列在一个个方格中,则:如果工作频段为3.5GHz,就可部署16副天线;如工作频段为10GHz,就可部署169根天线。。。。。

  image-20200401231723-5.png
3D-MIMO技术在原有的MIMO基础上增加了垂直维度,使得波束在空间上三维赋型,可避免了相互之间的干扰。配合大规模MIMO,可实现多方向波束赋型。

image-20200401231737-6.png
5、认知无线电技术(Cognitive radio spectrum sensing techniques)

认知无线电技术最大的特点就是能够动态的选择无线信道。在不产生干扰的前提下,手机通过不断感知频率,选择并使用可用的无线频谱。

image-20200401231757-7.png
6、超宽带频谱

信道容量与带宽和SNR成正比,为了满足5G网络Gpbs级的数据速率,需要更大的带宽。

频率越高,带宽就越大,信道容量也越高。因此,高频段连续带宽成为5G的必然选择。

得益于一些有效提升频谱效率的技术(比如:大规模MIMO),即使是采用相对简单的调制技术(比如QPSK),也可以实现在1Ghz的超带宽上实现10Gpbs的传输速率。

7、ultra-dense Hetnets(超密度异构网络)

立体分层网络(HetNet)是指,在宏蜂窝网络层中布放大量微蜂窝(Microcell)、微微蜂窝(Picocell)、毫微微蜂窝(Femtocell)等接入点,来满足数据容量增长要求。

image-20200401231822-8.png
到了5G时代,更多的物-物连接接入网络,HetNet的密度将会大大增加。

8、多技术载波聚合(multi-technology carrier aggregation)

如果没有记错,3GPP R12已经提到这一技术标准。

未来的网络是一个融合的网络,载波聚合技术不但要实现LTE内载波间的聚合,还要扩展到与3G、WIFI等网络的融合。

  image-20200401231839-9.png
多技术载波聚合技术与HetNet一起,终将实现万物之间的无缝连接。

5G四大应用场景

1、连续广域覆盖—这是移动通信最基本的覆盖方式,以保证用户的移动性和业务连续性为目标,为用户提供无缝的高速业务体验。该场景的主要挑战在于随时随地(包括小区边缘、高速移动等恶劣环境)为用户提供100Mbps以上的用户体验速率。

image-20200401231901-10.png

2、热点高容量—主要面向局部热点区域,为用户提供极高的数据传输速率,满足网络极高的流量密度需求。1Gbps用户体验速率、数十Gbps峰值速率和数十Tbps/km2的流量密度需求是该场景面临的主要挑战。

image-20200401231918-11.png

3、低功耗大连接—主要面向智慧城市、环境监测、智能农业、森林防火等以传感和数据采集为目标的应用场景,具有小数据包、低功耗、海量连接等特点。这类终端分布范围广、数量众多,不仅要求网络具备超千亿连接的支持能力,满足100万/km2连接数密度指标要求,而且还要保证终端的超低功耗和超低成本。

image-20200401231933-12.png
4.低时延高可靠—主要面向车联网、工业控制等垂直行业的特殊应用需求,这类应用对时延和可靠性具有极高的指标要求,需要为用户提供毫秒级的端到端时延和接近100%的业务可靠性保证。

本帖最后由 Jacktang 于 2020-4-1 23:20 编辑

回复评论 (2)

还是没懂。毕竟技术底层太复杂了。普通应用,知道怎么用就行了

点赞  2020-4-2 10:23

看着确实高端大气,5G简直加速了整个社会的高端智能和联通速度,太完美了。

点赞  2020-4-9 17:19
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 京公网安备 11010802033920号
    写回复