本次基于定时器的捕获功能和段码显示,实现一个PWM信号采集的功能。
原理见TIM1_Init
sSlaveConfig.TriggerPolarity = TIM_SLAVE_CAPTURE_ACTIVE_FALLING; 设置为下降沿开始捕获。
通道1设置下降沿捕获Tim_IC_Init_Para.ICPolarity = TIM_SLAVE_CAPTURE_ACTIVE_FALLING;
通道2设置上升沿捕获Tim_IC_Init_Para.ICPolarity = TIM_SLAVE_CAPTURE_ACTIVE_RISING;
所以CCR2即周期,CCR1-CCR即高脉宽时间。
基于LCD_TK进行。
使用上4位数显示频率。
使用下4位数显示占空比,0~100。
使用TIMER1,PC8输入。
试用APB时钟System_Get_APBClock可以看到时钟是64M,
16位计数器,最长可以测量2^16*1/64M=1.024ms的周期,也就是大于1k频率的信号。
App.c代码如下
/*
******************************************************************************
* @File APP.c
* @author CWT
* @version V1.0.0
* @date 2020
* @brief LCD demo source code.
******************************************************************************
*/
#include "APP.h"
#include "SHT30.h"
#include "lcd_GDC04212.h"
#include "lcd_GDC03828.h"
#include "lcd_YR1618A.h"
#include "buzzer.h"
#include "TKEY.h"
LCD_HandleTypeDef *lcdhandle; //LCD HandleÖ¸Õë
I2C_HandleTypeDef I2C_Handle; //I2C HandleÖ¸Õë
#define BUFFER_LENGTH (256)
uint8_t gu8_TxBuffer[BUFFER_LENGTH];
uint8_t gu8_RxBuffer[BUFFER_LENGTH];
uint8_t gu8_time_count_free = 0;//0-free,1-0.5s,2-1s,
uint32_t gu32_time_1s_cont = 0;
extern volatile uint32_t gu32_SystemCount;
void(*LCD_DisplayNum)(uint32_t);//LCDÏÔʾº¯ÊýÖ¸Õë
void(*LCD_Init)(void);//LCD³õʼ»¯º¯ÊýÖ¸Õë
extern void (*SysTick_Handler_Callback)(void);
extern LCD_HandleTypeDef lcdhandle_GDC04212;
extern LCD_HandleTypeDef lcdhandle_GDC03828;
extern LCD_HandleTypeDef lcdhandle_YR1618A;
TIM_HandleTypeDef TIM6_Handler;
DMA_HandleTypeDef DMA_CH1_Handle;
DMA_LLI_InitTypeDef DMA_CH1_Handle_link1;
DMA_LLI_InitTypeDef DMA_CH1_Handle_link2;
DMA_LLI_InitTypeDef DMA_CH1_Handle_link3;
DMA_LLI_InitTypeDef DMA_CH1_Handle_link4;
DMA_LLI_InitTypeDef DMA_CH1_Handle_link5;
DMA_LLI_InitTypeDef DMA_CH1_Handle_link6;
DMA_LLI_InitTypeDef DMA_CH1_Handle_link7;
DMA_LLI_InitTypeDef DMA_CH1_Handle_link8;
DMA_LLI_InitTypeDef DMA_CH1_Handle_link9;
#if defined LCD_GDC04212 //¶ÔÓ¦GDC04212µÄ9Ö¡Êý¾Ý£¬·Ö±ðÏÔʾΪ¡°1111¡±-"9999"
uint32_t wdata1[16]={0x06000600,0x06000600,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint32_t wdata2[16]={0x0B060B06,0x0B060B06,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint32_t wdata3[16]={0xF020F02,0xF020F02,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint32_t wdata4[16]={0x06030603,0x06030603,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint32_t wdata5[16]={0xD030D03,0xD030D03,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint32_t wdata6[16]={0x0D070D07,0x0D070D07,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint32_t wdata7[16]={0x07000700,0x07000700,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint32_t wdata8[16]={0x0F070F07,0x0F070F07,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint32_t wdata9[16]={0xF030F03,0xF030F03,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
#elif defined LCD_GDC03828 //¶ÔÓ¦GDC03828µÄ9Ö¡Êý¾Ý£¬·Ö±ðÏÔʾΪ¡°1111¡±-"9999"
uint32_t wdata1[16]={0x06000600,0x06000600,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint32_t wdata2[16]={0x0B060B06,0x0B060B06,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint32_t wdata3[16]={0xF020F02,0xF020F02,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint32_t wdata4[16]={0x06030603,0x06030603,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint32_t wdata5[16]={0xD030D03,0xD030D03,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint32_t wdata6[16]={0x0D070D07,0x0D070D07,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint32_t wdata7[16]={0x07000700,0x07000700,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint32_t wdata8[16]={0x0F070F07,0x0F070F07,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint32_t wdata9[16]={0xF030F03,0xF030F03,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
#else//¶ÔÓ¦YR1618AµÄ9Ö¡Êý¾Ý£¬·Ö±ðÏÔʾΪ¡°1111¡±-"9999"
uint32_t wdata1[16]={0x06C8E0FF,0x02488055,0x06C8E0FF,0x02488055,0,0,0,0,0,0,0,0,0,0,0,0};
uint32_t wdata2[16]={0x048060AA,0x00000000,0x048060AA,0x00000000,0,0,0,0,0,0,0,0,0,0,0,0};
uint32_t wdata3[16]={0x06C8E0FF,0x048060AA,0x02488055,0x02488055,0,0,0,0,0,0,0,0,0,0,0,0};
uint32_t wdata4[16]={0x06C8E0FF,0x048060AA,0x048060AA,0x02488055,0,0,0,0,0,0,0,0,0,0,0,0};
uint32_t wdata5[16]={0x048060AA,0x06C8E0FF,0x048060AA,0x00000000,0,0,0,0,0,0,0,0,0,0,0,0};
uint32_t wdata6[16]={0x02488055,0x06C8E0FF,0x048060AA,0x02488055,0,0,0,0,0,0,0,0,0,0,0,0};
uint32_t wdata7[16]={0x02488055,0x06C8E0FF,0x06C8E0FF,0x02488055,0,0,0,0,0,0,0,0,0,0,0,0};
uint32_t wdata8[16]={0x06C8E0FF,0x00000000,0x048060AA,0x00000000,0,0,0,0,0,0,0,0,0,0,0,0};
uint32_t wdata9[16]={0x06C8E0FF,0x06C8E0FF,0x06C8E0FF,0x02488055,0,0,0,0,0,0,0,0,0,0,0,0};
#endif
EXTI_HandleTypeDef EXTI_Line13_Handle;
GPIO_InitTypeDef GPIO_PC13_Handle;
/*********************************************************************************
* Function : LCD_IRQHandler
* Description : LCD Interrupt handler
* Input :
* Outpu :
* Author : CWT Data : 2021Äê
**********************************************************************************/
void LCD_IRQHandler(void)
{
HAL_LCD_IRQHandler(lcdhandle);
}
/*********************************************************************************
* Function : DMA_IRQHandler
* Description : DMA Interrupt handler
* Input :
* Outpu :
* Author : CWT Data : 2021Äê
**********************************************************************************/
void DMA_IRQHandler(void)
{
HAL_DMA_IRQHandler(&DMA_CH1_Handle);
}
/************************************************************************
* function : HAL_I2C_MspInit
* Description:
* input : hi2c : pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
************************************************************************/
void HAL_I2C_MspInit(I2C_HandleTypeDef *hi2c)
{
/*
NOTE : This function should be modified by the user.
*/
/* For Example */
GPIO_InitTypeDef GPIO_Handle;
/* I2C1 */
/* I2C2 */
if (hi2c->Instance == I2C2)
{
System_Module_Enable(EN_I2C2);
System_Module_Enable(EN_GPIOCD);
/* I2C2 SDA PortD Pin7 */
/* I2C2 SCL PortD Pin6 */
GPIO_Handle.Pin = GPIO_PIN_6 | GPIO_PIN_7;
GPIO_Handle.Mode = GPIO_MODE_AF_PP;
GPIO_Handle.Pull = GPIO_PULLUP;
GPIO_Handle.Alternate = GPIO_FUNCTION_1;
HAL_GPIO_Init(GPIOD, &GPIO_Handle);
/* Clear Pending Interrupt */
NVIC_ClearPendingIRQ(I2C2_IRQn);
/* Enable External Interrupt */
NVIC_EnableIRQ(I2C2_IRQn);
}
}
/************************************************************************
* function : I2C_Init
* Description: I2C Initiation.
* Input :
* Outpu :
* Author : ZK Data : 2022Äê
************************************************************************/
void I2C_Init(void)
{
I2C_Handle.Instance = I2C2;
I2C_Handle.Init.I2C_Mode = I2C_MODE_MASTER;
I2C_Handle.Init.Tx_Auto_En = TX_AUTO_EN_ENABLE;
I2C_Handle.Init.Clock_Speed = CLOCK_SPEED_STANDARD;
I2C_Handle.Init.No_Stretch_Mode = NO_STRETCH_MODE_NOSTRETCH;
HAL_I2C_Init(&I2C_Handle);
}
/************************************************************************
* function : SHT30_Read_Result
* Description: get SHT30 result
* Input :
* Outpu :
* Author : ZK Data : 2022Äê
************************************************************************/
void SHT30_Read_Result(uint8_t *sht30_data,float *getTempHum)
{
uint16_t tem,hum;
float Temperature=0;
float Humidity=0;
tem = ((sht30_data[0]<<8) | sht30_data[1]);//ζÈÆ´½Ó
hum = ((sht30_data[3]<<8) | sht30_data[4]);//ʪ¶ÈÆ´½Ó
/*ת»»Êµ¼ÊζÈ*/
Temperature= (175.0*(float)tem/65535.0-45.0) ;// T = -45 + 175 * tem / (2^16-1)
Humidity= (100.0*(float)hum/65535.0);// RH = hum*100 / (2^16-1)
// if((Temperature>=-20)&&(Temperature<=125)&&(Humidity>=0)&&(Humidity<=100))//¹ýÂË´íÎóÊý¾Ý
// {
// printfS("%6.2f*C %6.2f%%",Temperature,Humidity);//111.01*C 100.01%£¨±£Áô2λСÊý£©
// }
getTempHum[0]=Temperature;
getTempHum[1]=Humidity;
}
/************************************************************************
* function : SHT30_Init
* Description: SHT30 Initiation.
* Input :
* Outpu :
* Author : ZK Data : 2022Äê
************************************************************************/
void SHT30_Init(void)
{
I2C_Init();
SHT30_Reset(I2C_Handle);
}
/*********************************************************************************
* Function : LCD_Config
* Description : Config LCD
* Input :
* Outpu :
* Author : CWT Data : 2021Äê
**********************************************************************************/
void LCD_Config(void)
{
#if defined LCD_GDC04212
LCD_DisplayNum=LCD_DisplayNum_GDC04212;
LCD_Init=LCD_Init_GDC04212;
lcdhandle=&lcdhandle_GDC04212;
#elif defined LCD_GDC03828
LCD_DisplayNum=LCD_DisplayNum_GDC003828;
LCD_Init=LCD_Init_GDC03828;
lcdhandle=&lcdhandle_GDC03828;
#else
LCD_DisplayNum=LCD_DisplayNum_YR1618A;
LCD_Init=LCD_Init_YR1618A;
lcdhandle=&lcdhandle_YR1618A;
#endif
LCD_Init();
LCD_BACK_LED();
}
/*********************************************************************************
* Function : LCD_DisplayTest
* Description : LCD DisplayTest
* Input :
* Outpu :
* Author : ZK Data : 2022Äê
**********************************************************************************/
void LCD_DisplayTest()
{
while(1)
{
#ifdef LCD_YR1618A
LCD_YR1618A_SelfDisplay();
#else
for(uint16_t i=0;i<10000;i++)
{
LCD_DisplayNum(i);
System_Delay_MS(100);
}
#endif
}
}
void EXTI_IRQHandler(void)
{
HAL_EXTI_IRQHandler(&EXTI_Line13_Handle);
}
/*********************************************************************************
* Function : LCD_Sleep_DMA_Test
* Description : LCD Display in sleep,use DMA to Reresh data to LCDRAM
* Input :
* Outpu :
* Author : CWT Data : 2021Äê
**********************************************************************************/
void LCD_Sleep_DMA_Test()/*SleepģʽÏÂÓÃDMA½øÐÐÑ»·ÏÔʾ*/
{
memset(&DMA_CH1_Handle,0,sizeof(DMA_CH1_Handle));//³õʼ»¯ÇåÁãHandle
//DMAÅäÖÃ
DMA_CH1_Handle.Instance = DMA_Channel0;
DMA_CH1_Handle.Init.Data_Flow = DMA_DATA_FLOW_M2P;
DMA_CH1_Handle.Init.Request_ID = REQ22_TIM3_CH2_LCDFRAME;
DMA_CH1_Handle.Init.Source_Inc = DMA_SOURCE_ADDR_INCREASE_ENABLE;
DMA_CH1_Handle.Init.Desination_Inc = DMA_DST_ADDR_INCREASE_ENABLE;
DMA_CH1_Handle.Init.Source_Width = DMA_SRC_WIDTH_WORD;
DMA_CH1_Handle.Init.Desination_Width = DMA_DST_WIDTH_WORD;
HAL_DMA_Init(&DMA_CH1_Handle);
DMA_CH1_Handle.Instance->CTRL &= ~DMA_CHANNEL_CTRL_ITC;//¹Ø±ÕÁ´±íÍê³ÉÖжϣ¬·ñÔòSleepģʽÏ£¬°áÔËÍæÁ´±í1Ôò²úÉúÖжϻ½ÐÑSleep
//DMAÁ´±íÅäÖÃ1
DMA_CH1_Handle_link1.SrcAddr = (uint32_t)(wdata1);
DMA_CH1_Handle_link1.DstAddr = (uint32_t)(&lcdhandle->Instance->LCD_RAM[0]);
DMA_CH1_Handle_link1.Next = &DMA_CH1_Handle_link2;
DMA_CH1_Handle_link1.Control = DMA_CH1_Handle.Instance->CTRL | 16;
//DMAÁ´±íÅäÖÃ2
DMA_CH1_Handle_link2.SrcAddr = (uint32_t)(wdata2);
DMA_CH1_Handle_link2.DstAddr = (uint32_t)(&lcdhandle->Instance->LCD_RAM[0]);
DMA_CH1_Handle_link2.Next = &DMA_CH1_Handle_link3;
DMA_CH1_Handle_link2.Control = DMA_CH1_Handle.Instance->CTRL | 16;
//DMAÁ´±íÅäÖÃ3
DMA_CH1_Handle_link3.SrcAddr = (uint32_t)(wdata3);
DMA_CH1_Handle_link3.DstAddr = (uint32_t)(&lcdhandle->Instance->LCD_RAM[0]);
DMA_CH1_Handle_link3.Next = &DMA_CH1_Handle_link4;
DMA_CH1_Handle_link3.Control = DMA_CH1_Handle.Instance->CTRL | 16;
//DMAÁ´±íÅäÖÃ4
DMA_CH1_Handle_link4.SrcAddr = (uint32_t)(wdata4);
DMA_CH1_Handle_link4.DstAddr = (uint32_t)(&lcdhandle->Instance->LCD_RAM[0]);
DMA_CH1_Handle_link4.Next = &DMA_CH1_Handle_link5;
DMA_CH1_Handle_link4.Control = DMA_CH1_Handle.Instance->CTRL | 16;
//DMAÁ´±íÅäÖÃ5
DMA_CH1_Handle_link5.SrcAddr = (uint32_t)(wdata5);
DMA_CH1_Handle_link5.DstAddr = (uint32_t)(&lcdhandle->Instance->LCD_RAM[0]);
DMA_CH1_Handle_link5.Next = &DMA_CH1_Handle_link6;
DMA_CH1_Handle_link5.Control = DMA_CH1_Handle.Instance->CTRL | 16;
//DMAÁ´±íÅäÖÃ6
DMA_CH1_Handle_link6.SrcAddr = (uint32_t)(wdata6);
DMA_CH1_Handle_link6.DstAddr = (uint32_t)(&lcdhandle->Instance->LCD_RAM[0]);
DMA_CH1_Handle_link6.Next = &DMA_CH1_Handle_link7;
DMA_CH1_Handle_link6.Control = DMA_CH1_Handle.Instance->CTRL | 16;
//DMAÁ´±íÅäÖÃ7
DMA_CH1_Handle_link7.SrcAddr = (uint32_t)(wdata7);
DMA_CH1_Handle_link7.DstAddr = (uint32_t)(&lcdhandle->Instance->LCD_RAM[0]);
DMA_CH1_Handle_link7.Next = &DMA_CH1_Handle_link8;
DMA_CH1_Handle_link7.Control = DMA_CH1_Handle.Instance->CTRL | 16;
//DMAÁ´±íÅäÖÃ8
DMA_CH1_Handle_link8.SrcAddr = (uint32_t)(wdata8);
DMA_CH1_Handle_link8.DstAddr = (uint32_t)(&lcdhandle->Instance->LCD_RAM[0]);
DMA_CH1_Handle_link8.Next = &DMA_CH1_Handle_link9;
DMA_CH1_Handle_link8.Control = DMA_CH1_Handle.Instance->CTRL | 16;
//DMAÁ´±íÅäÖÃ9
DMA_CH1_Handle_link9.SrcAddr = (uint32_t)(wdata9);
DMA_CH1_Handle_link9.DstAddr = (uint32_t)(&lcdhandle->Instance->LCD_RAM[0]);
DMA_CH1_Handle_link9.Next = NULL;
//×îºóÒ»´Î´«Ê俪ÆôÁ´±íÍê³ÉÖжϣ¬ÓÃÓÚ»½ÐÑLCD£¬Ò²¿É¸ù¾ÝÐèÒª£¬Ö¸ÏòÁ´±í1Ñ»·ÏÔʾ
DMA_CH1_Handle_link9.Control = DMA_CH1_Handle.Instance->CTRL | 16|(DMA_CHANNEL_CTRL_ITC);
/*Á´±íÅäÖÃÍê³É£¬ÉèÖÃDMAµÄÁ´±íµØַΪÁ´±í1£¬¿ªÊ¼DMA´«Êä*/
DMA_CH1_Handle.Instance->LLI =(uint32_t)&DMA_CH1_Handle_link1;
__HAL_LINK_DMA((*lcdhandle), DMA_Handle, DMA_CH1_Handle);
HAL_LCD_Start_DMA(lcdhandle, wdata1, 16);
/*½øÈëSleepÇ°ÐèÒª¹Ø±ÕSystickºÍLCDÖжϣ¬·ñÔòÒ»½øÈëSleep¾Í±»»½ÐÑ*/
SysTick->CTRL = 0;
lcdhandle->Instance->CR1 &= ~LCD_CR1_IE;
System_Enter_Sleep_Mode(SLEEPENTRY_WFI);//½øÈësleep
/*°áÔËÍê³É£¬Í˳öSleep£¬ÏÔʾ1234*/
LCD_DisplayNum(1234);
}
/*********************************************************************************
* Function : Exit_Config
* Description : Exit_Config
* Input :
* Outpu :
* Author : ZK Data : 2022Äê
**********************************************************************************/
void Exit_Config(void)
{
/* Initialization GPIO */
/* RTC access enable */
System_Enable_Disable_RTC_Domain_Access(FUNC_ENABLE);
__HAL_RTC_PC13_SEL(0); // GPIO function
__HAL_RTC_PC13_PULL_UP_ENABLE();
__HAL_RTC_PC13_DIGIT();
System_Module_Enable(EN_EXTI);
/* Config EXTI */
EXTI_Line13_Handle.u32_Line = EXTI_LINE_13;
EXTI_Line13_Handle.u32_Mode = EXTI_MODE_INTERRUPT;
EXTI_Line13_Handle.u32_Trigger = EXTI_TRIGGER_FALLING;
EXTI_Line13_Handle.u32_GPIOSel = EXTI_GPIOC;
HAL_EXTI_SetConfigLine(&EXTI_Line13_Handle);
}
/*********************************************************************************
* Function : LCD_StopTest
* Description : LCD Dispaly in Stop
* Input :
* Outpu :
* Author : CWT Data : 2021Äê
**********************************************************************************/
void LCD_StopTest()/*StopģʽÏÂÏÔʾ*/
{
LCD_DisplayNum(6666);
Exit_Config();
HAL_EXTI_ClearAllPending();
System_Delay_MS(2000);
System_Enter_Stop_Mode(STOPENTRY_WFI);//½øÈëSTOP£¬²»»½ÐÑ£¬²é¿´ÊÇ·ñÕý³£ÏÔʾ
LCD_DisplayNum(8888);/*»½ÐÑ£¬ÈôÍ˳öStop£¬ÔòÏÔʾ8888*/
}
/*********************************************************************************
* Function : LCD_Test
* Description : LCD Test
* Input :
* Outpu :
* Author : CWT Data : 2021Äê
**********************************************************************************/
void LCD_Test(enum_TEST_MODE_t fe_Mode)
{
switch (fe_Mode)
{
/* Õý³£ÏÔʾģʽ */
case TEST_Dispaly_Normal:
{
LCD_DisplayTest();
}
/* StopģʽÏÔʾ */
case TEST_Dispaly_InStop:
{
LCD_StopTest();
while(1)
{
}
}
/* Sleepģʽ+DMA´«Êä+»½ÐÑÏÔʾ*/
case TEST_Dispaly_Sleep_DMA:
{
LCD_Sleep_DMA_Test();
while(1)
{
}
}
default: break;
}
}
/*********************************************************************************
* Function : Get_Touch_Key_Value
* Description : get key value
* Input :
* Output : key value
* Author : LWQ Data : 2022Äê
**********************************************************************************/
uint8_t Get_Touch_Key_Value(void)
{
static uint8_t key_flags = NO_KEY_DOWN; /* ÊÇ·ñÓа´¼ü°´ÏµıêÖ¾±äÁ¿ */
static uint32_t key_value = 0;
uint8_t i=0, key_num = 0;
uint32_t uwTouchBits = 0;
uint32_t uwTouchBits_ref = 0;
uint32_t uwkey_value = 0;
uint8_t ucKey = 0;
uwTouchBits = TK_GetPressRelaeseFlag();
uwTouchBits_ref = uwTouchBits;
uwkey_value = key_value;
for(i = 0; i < MAX_KEY_NUM; i++)
{
uwTouchBits &= (~key_value);
if((uwTouchBits >> i) & 0x0001)
{
key_num++;
}
}
if(key_flags == NO_KEY_DOWN)
{
if(key_num == 1)
{
key_flags = KEY_DOWN;
}
}
else if((key_value & uwTouchBits) == 0)
{
if(key_value != uwTouchBits_ref)
{
key_flags = NO_KEY_DOWN;
key_value = 0;
}
if(key_num == 1)
{
key_flags = OTHER_KEY_DOWN;
}
}
if(key_flags != NO_KEY_DOWN)
{
if(key_num == 1 && (key_value & uwTouchBits) == 0)
{
for(i = 0; i < MAX_KEY_NUM; i++)
{
if((key_num == 1) && ((uwTouchBits >> i) & 0x0001))//Åжϰ´¼üÖµ
{
if((uwkey_value & uwTouchBits_ref) == 0)
{
key_value = uwTouchBits;
ucKey = i;
printfS("TK_%d\r\n", i);
}
else
{
key_value = uwkey_value;
}
}
}
}
}
if(ucKey != 0)//È·ÈÏÊÇ°´Ï£¨²»ÊÇ̧ÊÖ£©
{
Beep_On(5);
}
return ucKey;
}
void SysTick_Callback(void)
{
if(gu8_time_count_free==0)
{
if(gu32_time_1s_cont==400)
{
gu8_time_count_free=2;
gu32_time_1s_cont=0;
}
else if(gu32_time_1s_cont==200)
{
gu8_time_count_free=1;
gu32_time_1s_cont++;
}
else
{
gu32_time_1s_cont++;
}
}
}
/***********************************************************************
* Filename : app.c
* Description : app source file
* Author(s) : xwl
* version : V1.0
* Modify date : 2020-04-07
***********************************************************************/
#include "app.h"
TIM_HandleTypeDef TIM_Handler;
volatile uint32_t Capture_Ch1, Capture_Ch2;
uint32_t Timer_CC1IF, Timer_CC2IF;
uint32_t freq, duty_cycle;
void TIM1_MSP_Pre_Init(TIM_HandleTypeDef * htim)
{
HAL_TIMER_MSP_Init(htim);
}
//use PC8 to capture input signal
void TIM1_MSP_Post_Init(void)
{
GPIO_InitTypeDef gpio_init;
gpio_init.Pin = GPIO_PIN_8; //TIM1_CH1
gpio_init.Mode = GPIO_MODE_AF_PP;
gpio_init.Pull = GPIO_PULLUP;
gpio_init.Alternate = GPIO_FUNCTION_2;
HAL_GPIO_Init(GPIOC, &gpio_init);
NVIC_ClearPendingIRQ(TIM1_CC_IRQn);
NVIC_EnableIRQ(TIM1_CC_IRQn);
}
void TIM1_Init(void)
{
TIM_SlaveConfigTypeDef sSlaveConfig = {0};
TIM_IC_InitTypeDef Tim_IC_Init_Para;
TIM_Handler.Instance = TIM1;
TIM_Handler.Init.ARRPreLoadEn = TIM_ARR_PRELOAD_ENABLE;
TIM_Handler.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
TIM_Handler.Init.CounterMode = TIM_COUNTERMODE_UP;
TIM_Handler.Init.RepetitionCounter = 0;
TIM_Handler.Init.Prescaler = 0;
TIM_Handler.Init.Period = 0xFFFF; // max period
TIM1_MSP_Pre_Init(&TIM_Handler);
HAL_TIMER_Base_Init(&TIM_Handler);
sSlaveConfig.SlaveMode = TIM_SLAVE_MODE_RST; // reset mode
sSlaveConfig.InputTrigger = TIM_TRIGGER_SOURCE_TI1FP1; // the same as channel 1 capture configuration
sSlaveConfig.TriggerPolarity = TIM_SLAVE_CAPTURE_ACTIVE_FALLING;
sSlaveConfig.TriggerFilter = TIM_TI1_FILTER_LVL(2); // no filter
HAL_TIMER_Slave_Mode_Config(&TIM_Handler, &sSlaveConfig);
Tim_IC_Init_Para.TIFilter = TIM_TI1_FILTER_LVL(2); // no filter
Tim_IC_Init_Para.ICPolarity = TIM_SLAVE_CAPTURE_ACTIVE_FALLING;
Tim_IC_Init_Para.ICPrescaler = 0;
Tim_IC_Init_Para.ICSelection = TIM_ICSELECTION_DIRECTTI; // TI1FP1
HAL_TIMER_Capture_Config(TIM_Handler.Instance, &Tim_IC_Init_Para, TIM_CHANNEL_1);
Tim_IC_Init_Para.ICPolarity = TIM_SLAVE_CAPTURE_ACTIVE_RISING;
Tim_IC_Init_Para.ICSelection = TIM_ICSELECTION_INDIRECTTI; // TI1FP2
HAL_TIMER_Capture_Config(TIM_Handler.Instance, &Tim_IC_Init_Para, TIM_CHANNEL_2);
TIM1_MSP_Post_Init();
}
void TIM1_PWM_Input_Test(uint32_t timer_clock,uint32_t *period,uint32_t *duty)
{
Timer_CC1IF = 0;
Timer_CC2IF = 0;
HAL_TIM_Capture_Start(TIM_Handler.Instance, TIM_CHANNEL_1);
HAL_TIM_Capture_Start(TIM_Handler.Instance, TIM_CHANNEL_2);
uint32_t diff = 0;
while(1)
{
if (TIM1->SR & TIMER_SR_CC1IF) //reset
{
TIM1->SR = 0;
while (0 == (TIM1->SR & TIMER_SR_CC2IF) );
Capture_Ch2 = TIM1->CCR2;
while (0 == (TIM1->SR & TIMER_SR_CC1IF) );
Capture_Ch1 = TIM1->CCR1;
Timer_CC1IF = 1;
Timer_CC2IF = 1;
TIM1->SR = 0;
}
if(Timer_CC1IF && Timer_CC2IF)
{
if(Capture_Ch1 > Capture_Ch2)
{
diff = (uint32_t)Capture_Ch1 - (uint32_t)Capture_Ch2;
freq = timer_clock / (uint32_t)Capture_Ch1;
duty_cycle = ( diff * 100) / ((uint32_t)Capture_Ch1);
}
else
{
diff = (uint32_t)Capture_Ch1 + (uint32_t)0xFFFF - (uint32_t)Capture_Ch2;
freq = timer_clock / ((uint32_t)0xFFFF + (uint32_t)Capture_Ch1);
duty_cycle = ( diff * 100) / ((uint32_t)0xFFFF + (uint32_t)Capture_Ch1);
}
//printfS("Capture_Ch1:%d, Capture_Ch2:%d\n", Capture_Ch1, Capture_Ch2);
//printfS("External signal frequency:%dHz, duty cycle:%d%%\n", freq, duty_cycle);
*period = freq;
*duty = duty_cycle;
Timer_CC1IF = 0;
Timer_CC2IF = 0;
break;
}
}
}
void App_Test(void)
{
float ff_getTempHum[2];
uint16_t fu16_num_up, fu16_num_down;
uint32_t fu32_Displayup[4]={0},fu32_Displaydown[4]={0},fu32_num_123567p[7]={0},fu32_num_col[2]={0},fu32_num_s=0;
uint8_t fu8_Tkey_state = 0xff, fu8_Work_Mode=0;
uint16_t fu16_set_num_up=0,fu16_set_num_down=0;
uint8_t fu8_Hidden_point=0;//Òþ²Øµã
uint8_t ret = 0;
LCD_Config();
SHT30_Init();
BUZZER_Init();
ret = TouchKey_Init();
if(ret)
{
printfS("TouchKey_Init is Fail!\r\n");
}
else
{
printfS("TouchKey_Init is Success!\r\n");
}
//LCD_YR1618A_SelfDisplay();
uint32_t timer_clock;
timer_clock = System_Get_APBClock();
if (System_Get_SystemClock() != System_Get_APBClock()) // if hclk/pclk != 1, then timer clk = pclk * 2
{
timer_clock = System_Get_APBClock() << 1;
}
TIM1_Init();
while(1)
{
fu8_Tkey_state = TK_TimerSacn_GetKeyVal();//Get_Touch_Key_Value();
if(fu8_Tkey_state != 0xFF)
{
Beep_On(5);
#ifndef TKEY_WAVEFORM_OUTPUT
printfS("TK_%d\r\n", fu8_Tkey_state);
#endif
}
TKEY_Calibrate_Process();
uint32_t period;
uint32_t duty;
TIM1_PWM_Input_Test(timer_clock,&period,&duty);
HAL_TIM_Capture_Stop(TIM_Handler.Instance, TIM_CHANNEL_1);
HAL_TIM_Capture_Stop(TIM_Handler.Instance, TIM_CHANNEL_2);
HAL_TIMER_Clear_Capture_Flag(&TIM_Handler, TIM_CHANNEL_1);
HAL_TIMER_Clear_Capture_Flag(&TIM_Handler, TIM_CHANNEL_2);
fu32_Displayup[0]=period/1000%10;//ǧλ,LCDµÚ1¸öλÖÃ(´Ó×óµ½ÓÒ)--5
fu32_Displayup[1]=period/100%10;//°×λ,LCDµÚ2¸öλÖÃ(´Ó×óµ½ÓÒ)---6
fu32_Displayup[2]=period/10%10;//ʮλ,LCDµÚ3¸öλÖÃ(´Ó×óµ½ÓÒ)----7
fu32_Displayup[3]=period/1%10;//¸öλ,LCDµÚ4¸öλÖÃ(´Ó×óµ½ÓÒ)-----8
fu32_Displaydown[0]=duty/1000%10;//ǧλ,LCDµÚ1¸öλÖÃ(´Ó×óµ½ÓÒ)--5
fu32_Displaydown[1]=duty/100%10;//°×λ,LCDµÚ2¸öλÖÃ(´Ó×óµ½ÓÒ)---6
fu32_Displaydown[2]=duty/10%10;//ʮλ,LCDµÚ3¸öλÖÃ(´Ó×óµ½ÓÒ)----7
fu32_Displaydown[3]=duty/1%10;//¸öλ,LCDµÚ4¸öλÖÃ(´Ó×óµ½ÓÒ)-----8
LCD_YR1618A_VIEW(fu32_Displayup,fu32_Displaydown,fu32_num_123567p,fu32_num_col,fu32_num_s);
System_Delay_MS(1000);
}
}
在PC8引脚产生一个PWM信号,液晶屏查看频率(上四位)和占空比(下四位)变化。
定性查看变化是否正确。
有条件可以使用PWM信号源,测量不同频率和占空比的信号,测量精度。
对于采集精度由于没有标准PWM源所以不能精确测量,只能定性测试。
有条件的可以测试下
基于官方的HAL库,能进行快速功能验证开发,本次快速实现了一个PWM采集的功能,集合前面的计数器,电压计,PWM发生器,PWM采集器可以综合为一个试用的测试小工具,可以考虑做个盒子,单独引出探头,打造为一个小测试工具,这在嵌入式开发时非常方便有用。
本帖最后由 qinyunti 于 2022-9-27 22:24 编辑
基于官方的HAL库,能进行快速功能验证开发,本次快速实现了一个PWM采集的功能,集合前面的计数器,电压计,PWM发生器,PWM采集器可以综合为一个试用的测试小工具,可以考虑做个盒子,单独引出探头,打造为一个小测试工具,这在嵌入式开发时非常方便有用。
想法非常不错。