1 先看坏的一面,回顾下电阻噪声问题
电阻的噪声通常指的热噪声,哪怕电阻没有连接到电路中,没有电流流过电阻,电阻两端也会有电压变化,这就是电阻热噪声,在系统工作频率范围内,电阻的热噪声可以认为是白噪声。
电阻两端开路时,它的热噪声有效值的计算公式是:
k是玻尔兹曼常数,k=1.38*10-23 J/K,T是开尔文热力学温度,R是电阻值,B是系统等效噪声带宽。
举例:
当温度是27℃(300开尔文)时,10KΩ的电阻,在100KHz放大电路中,电阻两端的开路热噪声电压有效值是4uV。
相同环境下,如果电阻是20KΩ,则热噪声电压有效值是5.8uV。
根据公式我们可以看出来,电阻越大,噪声也越大,噪声随着电阻阻值的增加而增加(这句话就是本文的起源)。
同样的,噪声也与温度有关,只是这个噪声对温度并不敏感,因为公式中是热力学温度,当温度变化为十几或几十摄氏度时,对噪声的影响并不是很大。
比如上面例子中,17℃和27℃下,电阻两端的噪声基本差别不大。
2 再看好的一面,电阻增加反而增加信噪比
不知道有没有同学听说过“电阻加一倍,信噪比加3dB”这个说法。
这个是使用电阻来测量电流时成立的结论,在用电阻测量电流的例子中,更大的电阻反而可以优化噪声性能,一般而言,我们测量电流的方法是让电流流过一个采样电阻R,通过检测电路两端的电压V,间接得到电流I=U/R,根据这个公式,在目标电流大小不变的情况下,电阻越大,电阻两端的电压就越大,见下图。
3 为什么电阻加一倍,信噪比加3dB?
信噪比的计算公式:
比如一个正弦电流I为:2*sin(t)
采样电阻的阻值为R,那么电阻两端的电压就是I*R=2R*sin(t),这个电压的有效值Vrms_sig1:
根据公式1,电阻两端噪声电压的有效值Vrms_noise1:
那么把Vrms_sig1和Vrms_noise1带入公式2,得到SNR1:
现在采样电阻阻值增加一倍,变为2R,那么电阻两端的电压就是I*R=4R*sin(t),这个电压的有效值Vrms_sig2:
根据公式1,电阻两端电压的有效值Vrms_noise2:
那么把Vrms_sig2和Vrms_noise2带入公式2,得到SNR2:
4 SNR2比SNR1大了多少呢?
所以电阻加一倍,电流采样的信噪比加3dB。
备注:高中log对数计算公式
5 电流采样电阻有什么注意事项呢?
咱们看图说话,下图中电源电压是U0,电流是I,电阻是R,那么电阻两端的压降就是IR,负载上的电压就是U0-IR,因此,如果为了提高采样电流信噪比而过度的用大电阻,那么导致负载上的电压U0-IR就会很小,无法满足负载要求,而且这个电阻越大,消耗的功耗也就越大。
有的同学会在调试时,用一个稍微大一点的采样电阻来采集电流,调试后用0欧姆代替这个电阻,这种做法无可厚非,但是不能用于电源性能敏感的负载,比如在PDN链路上,哪怕放一个0Ω的电阻,也可能会有几个或几十个mΩ电阻存在,这可能会严重减低PDN性能,需要慎重考虑。
噪声的本质应该是发生的谐振吧,就和电感等吼叫一样