[原创] 【ST NUCLEO-U5A5ZJ-Q开发板测评】 体验OPAMP

lugl4313820   2024-2-13 11:58 楼主

【实验硬件】

1、ST NUCLEO-U5A5ZJ-Q开发板

2、数字电源

3、两个万用表

【开发软件】

1、stm32CubeMAX

2、Keil5.38

【实验步骤】

1、阅读资料《RM0456》在第38.3.3中给出了我们两个放大器的输入与输出的管脚。

image.png  

在下表中列出了PAG模式的原理图,可以选择放大为2,4,8,16倍的增益输出。

image.png  

2、明白了原理后,打开stm32cubeMAX配置opamp1:

image.png   在GPIO中列出了IO:

image.png   生成代码后,打开工程。

【代码添加】

1、在代码中,自动给出了生成代码的初始化,但是如果要使用OPAMP还需要添加    HAL_OPAMP_Start(&hopamp1);这一句才能启动,当然如果在低功耗的场景,我们也可以使用HAL_OPAMP_Stop(&hopamp1);来停止放大器的工作。

具体代码如下:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * [url=home.php?mod=space&uid=1307177]@File[/url] GPIO/GPIO_IOToggle/Src/main.c
  * [url=home.php?mod=space&uid=1315547]@author[/url] MCD Application Team
  * [url=home.php?mod=space&uid=159083]@brief[/url] This example describes how to configure and use GPIOs through
  *          the STM32U5xx HAL API.
  ******************************************************************************
  * [url=home.php?mod=space&uid=1020061]@attention[/url] *
  * Copyright (c) 2022 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "icache.h"
#include "memorymap.h"
#include "opamp.h"
#include "usart.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "tos_k.h "
#include "cmsis_os.h"

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
extern OPAMP_HandleTypeDef hopamp1;
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */
static GPIO_InitTypeDef  GPIO_InitStruct;

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void SystemPower_Config(void);
/* USER CODE BEGIN PFP */
//task1
#define TASK1_STK_SIZE 512
void task1(void *pdata);
osThreadDef(task1, osPriorityNormal, 1, TASK1_STK_SIZE);

//task2
#define TASK2_STK_SIZE 512
void task2(void *pdata);
osThreadDef(task2, osPriorityNormal, 1, TASK2_STK_SIZE);
/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void task1(void *pdata)
{
    while(1)
    {
        HAL_GPIO_TogglePin(LED1_GPIO_PORT, LED1_PIN);
        osDelay(200);
    }
}

void task2(void *pdata) {
    while(1) {
        HAL_GPIO_TogglePin(LED2_GPIO_PORT, LED2_PIN);
        osDelay(1000);
    }
}
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
  /* STM32U5xx HAL library initialization:
       - Configure the Flash prefetch
       - Configure the Systick to generate an interrupt each 1 msec
       - Set NVIC Group Priority to 3
       - Low Level Initialization
     */
  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* Configure the System Power */
  SystemPower_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_ICACHE_Init();
  MX_USART1_UART_Init();
  MX_USART2_UART_Init();
  MX_OPAMP1_Init();
  /* USER CODE BEGIN 2 */
	HAL_OPAMP_Start(&hopamp1);
   /* -1- Enable GPIO Clock (to be able to program the configuration registers) */
  LED1_GPIO_CLK_ENABLE();
  LED2_GPIO_CLK_ENABLE();

  /* -2- Configure IO in output push-pull mode to drive external LEDs */
  GPIO_InitStruct.Mode  = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull  = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;

  GPIO_InitStruct.Pin = LED1_PIN;
  HAL_GPIO_Init(LED1_GPIO_PORT, &GPIO_InitStruct);
  GPIO_InitStruct.Pin = LED2_PIN;
  HAL_GPIO_Init(LED2_GPIO_PORT, &GPIO_InitStruct);
	
	osKernelInitialize();
	osThreadCreate(osThread(task1),NULL);
	osThreadCreate(osThread(task2),NULL);
	osKernelStart();
  /* USER CODE END 2 */
	
	
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
    HAL_GPIO_TogglePin(LED1_GPIO_PORT, LED1_PIN);
    /* Insert delay 100 ms */
    HAL_Delay(100);
    HAL_GPIO_TogglePin(LED2_GPIO_PORT, LED2_PIN);
    /* Insert delay 100 ms */
    HAL_Delay(100);

  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI;
  RCC_OscInitStruct.MSIState = RCC_MSI_ON;
  RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_4;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI;
  RCC_OscInitStruct.PLL.PLLMBOOST = RCC_PLLMBOOST_DIV1;
  RCC_OscInitStruct.PLL.PLLM = 1;
  RCC_OscInitStruct.PLL.PLLN = 80;
  RCC_OscInitStruct.PLL.PLLP = 2;
  RCC_OscInitStruct.PLL.PLLQ = 2;
  RCC_OscInitStruct.PLL.PLLR = 2;
  RCC_OscInitStruct.PLL.PLLRGE = RCC_PLLVCIRANGE_0;
  RCC_OscInitStruct.PLL.PLLFRACN = 0;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
                              |RCC_CLOCKTYPE_PCLK3;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB3CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief Power Configuration
  * @retval None
  */
static void SystemPower_Config(void)
{

  /*
   * Disable the internal Pull-Up in Dead Battery pins of UCPD peripheral
   */
  HAL_PWREx_DisableUCPDDeadBattery();

  /*
   * Switch to SMPS regulator instead of LDO
   */
  if (HAL_PWREx_ConfigSupply(PWR_SMPS_SUPPLY) != HAL_OK)
  {
    Error_Handler();
  }
/* USER CODE BEGIN PWR */
/* USER CODE END PWR */
}

/* USER CODE BEGIN 4 */
/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  while(1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
    ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* Infinite loop */
  while (1)
  {
  }

  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

【实验效果】

在2倍增益的效果下

测试效果
输入电压(mv) 输出电压(mv) 差值(mv)
8.3 17.8 -.1.2
18.2 37.6 -1.2
98.2 197.8 -1.4
198.1 389.2 7
495 998.5 -8.5
993 1999.3 -13.3
1492 3002.3 -18.3
1592 3203 -19

     注差值为:V输入*2-V输出

【总结】

经过上述的测试,在输入电压不变的情况下,输出也非常稳定,误差也控制得非常不错。

e3f64345d6219027fd743735db2801b.jpg  

3fe9296b564ffc17113201419559ceb.jpg  

1aa20aad1164b2205a6dc8fef41d30f.jpg  

c3422cf4c7f880f433f91f2d1761c22.jpg  

回复评论 (5)

列出了PAG模式的原理图,可以选择放大为2,4,8,16倍的增益输出,可以直接固定增益的还是挺方便的

在爱好的道路上不断前进,在生活的迷雾中播撒光引
点赞  2024-2-14 23:22
引用: 秦天qintian0303 发表于 2024-2-14 23:22 列出了PAG模式的原理图,可以选择放大为2,4,8,16倍的增益输出,可以直接固定增益的还是挺方便的

对呀,还可以通过放大后接入ADC进行测量,挺方便的。

点赞  2024-2-15 10:48
引用: lugl4313820 发表于 2024-2-15 10:48 对呀,还可以通过放大后接入ADC进行测量,挺方便的。

这就省的自己配置,而且这种内置的一般干扰应该会少一点  

在爱好的道路上不断前进,在生活的迷雾中播撒光引
点赞  2024-2-17 13:02

高级,这个OPAMP用处应该非常大,学习了。

 
点赞  2024-2-18 17:59
引用: HonestQiao 发表于 2024-2-18 17:59 高级,这个OPAMP用处应该非常大,学习了。  

感谢帮主的关注,我还是刚接触这OPAMP,希望帮主大佬多多指点!

点赞  2024-2-18 19:43
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 京公网安备 11010802033920号
    写回复