在现代电子设计中,电源完整性是PCB设计不可或缺的一部分。为了确保电子设备有稳定性能,从电源的源头到接收端,我们都必须全面考虑和设计。如电源模块、内层平面以及供电芯片等,通过精心设计和优化,才能实现真正意义上的电源完整性。本文将深入探讨这三个关键方面,为PCB设计提供实用的指导和策略。
电源模块布局布线
电源模块是电子设备的能量来源,其性能与布局直接影响到整个系统的稳定性和效率。正确的布局和走线不仅能减少噪声干扰,还能确保电流的顺畅流通,从而提高整体性能。
1
电源模块布局
● 源头处理:电源模块作为电源的起始点,布局时应特别注意,为了减小噪声引入,应确保电源模块的周围环境尽量清洁,避免与其他高频或噪声敏感元件相邻。
● 靠近供电芯片:电源模块应尽量靠近供电的芯片放置,这样可以减小电流传输过程中的损耗,并降低内层平面的面积需求。
● 散热考虑:电源模块在工作时可能会产生热量,因此应确保其上方没有遮挡物,以便于散热,如有必要,可以加入散热片或风扇进行散热。
● 避免环路:走线时应避免形成电流环路,以减少电磁干扰的可能性。
2
电源模块走线
● 宽度与电流:电源线的宽度应根据其所需承载的电流大小来确定,较大的电流需要更宽的线宽以确保电流能力。
● 过孔数量:在电源线的走线过程中,如果需要穿越层面,应确保有足够的过孔来承载电流,避免过孔过热。
● 距离与耦合:电源线与其他信号线之间的距离应适当,避免过于接近导致耦合效应。
● 地线处理:地线作为回流路径,应尽量确保地线的连续性,避免地线断裂或突然变窄。
内层平面设计规划
1
叠层设计
在PCB的EMC设计中,叠层设计是关键环节,需考虑布线与电源分割。
● 为确保电源平面的低阻抗特性及电源噪声的地耦合吸收,电源与地层间距应不大于10mil,通常建议小于5mil。
● 若单一电源平面无法实现,可利用表层铺设电源平面,紧相邻的电源和地平面形成了一个具有最小交流阻抗的平面电容,具有优异的高频特性。
● 避免相邻的两个电源层过近(特别是电压差异大的),以防止噪声互相耦合,如不可避免,应尽量增加两电源层间的间距。
● 参考平面,特别是电源参考平面,应保持低阻抗特性,可通过旁路电容和叠层调整来优化。
2
多种电源的分割
● 对于小范围的特定电源,如某IC芯片的核心工作电压,尽量在信号层上敷铜,以确保电源层的完整性,但避免在表层敷电源铜皮,减少噪声辐射。
● 分割宽度选择应适当,电压大于12V时,宽度可为20-30mil;反之选12-20mil,模拟与数字电源的分割宽度需加大,防止数字电源对模拟电源的噪声干扰。
● 简洁的电源网络应在走线层完成,而较长的电源网络需加滤波电容。
● 分割后的电源平面应保持规则,避免不规则形状导致谐振和电源阻抗增加,不允许有细长条和哑铃形分割。
3
平面滤波
● 电源平面应与地平面紧密耦合。
● 工作频率超过500MHz的芯片,应主要依靠平面电容滤波,并采用组合电容滤波,滤波效果需通过电源完整性仿真确认。
● 控制平面去耦电容的安装电感,如加宽电容引线、加大电容过孔等,确保电源地阻抗低于目标阻抗。
供电芯片布局布线
供电芯片是电子设备的核心,确保其电源完整性是提高设备性能与稳定性的关键,以下展开说明。
1
芯片电源管脚的走线处理
为了提供稳定的电流供应,建议将电源管脚走线加粗,一般应加粗至与芯片管脚相同的宽度。
通常,最小的宽度不应小于8mil,但为了达到更佳的效果,尽量将宽度做到10mil。
通过增加走线宽度,可以降低阻抗,从而减少电源噪声,并确保足够的电流供应给芯片。
2
去耦电容的布局与布线
去耦电容在供电芯片的电源完整性控制中发挥着重要作用,根据电容的特性和应用需求,去耦电容一般分为大电容和小电容两种。
● 大电容:大电容通常均匀分布在芯片周围,由于其谐振频率较低,滤波半径较大,它们能够有效地滤除低频噪声,并提供稳定的电源供应。
● 小电容:小电容的谐振频率较高,滤波半径较小,因此应该尽量靠近芯片管脚放置,如果放置过远,可能无法有效滤除高频噪声,失去去耦的作用。
3
并联多个去耦电容的布线方式
为了进一步提高电源完整性,通常会采用并联多个去耦电容的方式,这样可以利用电容的并联,来降低单个电容的等效串联电感(ESL)。
在并联多个去耦电容时,需要注意电容的打孔方式:将电源和地的过孔相互错开打孔。这样可以降低去耦电容之间的互感,确保互感远小于单个电容的ESL,从而实现并联多个去耦电容后,整体ESL的阻抗为1/N,同时通过降低互感,可以有效地提高滤波效果,并确保电源稳定性的提升。