[分享] 电源设计:同步整流带来的不仅仅是高效率

weixin-QNKJSY   2024-7-11 11:03 楼主

您是否曾经应要求设计过一种轻负载状态下具有良好负载瞬态响应的电源呢?如果是,并且您还允许电源非连续,那么您可能会发现控制环路的增益在轻负载状态下急剧下降。这会导致较差的瞬态响应,并且需要大量的输出滤波电容器。一种更简单的方法是让电源在所有负载状态下都为连续。

是一个简单的同步降压转换器,用于演示输出电感中连续和非连续电流的负载瞬态响应。在低至空载的负载状态下,输出电感电流都一直保持连续,因为同步整流器允许电感电流在轻负载状态下反向流动。只需用一个二极管替换底部FET (Q2),电路便可转为非连续。尽管本文介绍的是降压拓扑结构的区别,但您会注意到所有电源拓扑都有类似的响应。

 

 

v2-464e73221f353bbc157b9500e50a4835_720w.jpg

 

 

图2 同步运行(左)具有zui佳瞬态响应

非连续运行期间,瞬态响应较差的原因是环路特性急剧变化,如图3所示。左边的曲线显示了连续运行期间的环路增益。控制环路具有50kHz的带宽,相补角为60度。右边的曲线为功率级转为非连续时的响应情况。功率级从连续运行期间的一对复极,变为非连续运行期间的一个单低频实极点。该极点的频率由输出电容器和负载电阻器决定。相比连续情况,您可以看到低频率下低频极点引起的相移过程。低频率下,增益急剧下降,原因是极点导致更低的交叉频率,从而降低了瞬态响应。

总之,同步整流可提高效率,同时也能够极大地帮助瞬态负载调节。它为电源预加载提供了一种高效的方法。另外,相比摆动电感,它还拥有更加稳定的控制环路特性。它提高了传统降压转换器,以及所有其他能够使用同步整流的拓扑结构的动态性。

回复评论 (1)

有图2 同步运行,没图1

点赞  2024-7-11 11:59
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 京公网安备 11010802033920号
    写回复