这是我想的一个方法来实现等时间进行采样。希望高手指点更好的方法
AD设置()
{
频率设置
转化结束产生中断
单次转换
单通道
}
定时器设置()
{
定时19.531 us;//1024个点
定时中断开
}
定时中断()
{
启动AD转换;
等待转换结束;
将转换结果保存起来;
N+1;// 记录转换次数
}
AD采样函数()
{
启动定时器TIM2;
等待1024次定时中断;
If(N=1024)
{
关闭定时器2;
N=0;
}
}
用定时器是很容易实现等时采样,但是你始终没有关闭过A/D采样,也就是说一直在采样,定时器只是等时取值
定时19.531 us
st的定时可以达到这个精度否??
直接搞20us算了
不必使用定时中断,然后在中断中采样。
可以直接用定时器触发ADC转换,再由ADC触发DMA传送,在1024次传送完成时产生中断,一次性处理1024个采样结果。
楼主的要求是每20ms的一个周期中,均匀地采样1024次,如果使用72MHz的时钟,则设置定时器的定时周期为1406时钟周期,可以达到要求的精度;3楼多虑了,
才开始学习使用stm32 。 现在用stm32做项目 要用其来进行采样
ad软件启动是不是ADC_SoftwareStartConvCmd(ADC1, ENABLE); 这个函数
针对四楼的香水城 道理明白但不晓得怎么来弄 望指教!QQ:783055156
STM32的固件库中有一个例子,你稍微修改一下就可以用:
STM32F10x_StdPeriph_Lib_V3.1.2\Project\STM32F10x_StdPeriph_Examples\ADC\TIMTrigger_AutoInjection
由定时器触发A/D,虽然经常看到这种用法,但自己一直没这样用过
STM32F10x_StdPeriph_Lib_V3.1.2\Project\STM32F10x_StdPeriph_Examples\ADC\TIMTrigger_AutoInjection
这个函数库我没有只有v2.0的库能否发个例子程序 给我 谢谢
783055156@qq.com
我查看了几遍 库函数 和固件库手册 还是没有明白 ad软件启动的开关 是ADC_Cmd(adc1,enable)
还是ADC_SoftwareStartConvCmd(ADC1, enable);请指教
/**
******************************************************************************
* @file ADC/TIMTrigger_AutoInjection/main.c
* @author MCD Application Team
* @version V3.1.2
* @date 09/28/2009
* @brief Main program body
******************************************************************************
* @copy
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* <h2><center>© COPYRIGHT 2009 STMicroelectronics</center></h2>
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x.h"
/** @addtogroup STM32F10x_StdPeriph_Examples
* @{
*/
/** @addtogroup ADC_TIMTrigger_AutoInjection
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define ADC1_DR_Address ((uint32_t)0x4001244C)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
ADC_InitTypeDef ADC_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
__IO uint16_t ADC_RegularConvertedValueTab[32], ADC_InjectedConvertedValueTab[32];
ErrorStatus HSEStartUpStatus;
/* Private function prototypes -----------------------------------------------*/
void RCC_Configuration(void);
void GPIO_Configuration(void);
void NVIC_Configuration(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* System clocks configuration ---------------------------------------------*/
RCC_Configuration();
/* NVIC configuration ------------------------------------------------------*/
NVIC_Configuration();
/* GPIO configuration ------------------------------------------------------*/
GPIO_Configuration();
/* TIM1 configuration ------------------------------------------------------*/
/* Time Base configuration */
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
TIM_TimeBaseStructure.TIM_Period = 0xFF;
TIM_TimeBaseStructure.TIM_Prescaler = 0x4;
TIM_TimeBaseStructure.TIM_ClockDivision = 0x0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);
/* TIM1 channel1 configuration in PWM mode */
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 0x7F;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;
TIM_OC1Init(TIM1, &TIM_OCInitStructure);
/* DMA1 Channel1 Configuration ----------------------------------------------*/
DMA_DeInit(DMA1_Channel1);
DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_Address;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)ADC_RegularConvertedValueTab;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_BufferSize = 32;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel1, &DMA_InitStructure);
/* Enable DMA1 channel1 */
DMA_Cmd(DMA1_Channel1, ENABLE);
/* ADC1 configuration ------------------------------------------------------*/
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_InitStructure.ADC_ScanConvMode = DISABLE;
ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = 1;
ADC_Init(ADC1, &ADC_InitStructure);
/* ADC1 regular channel14 configuration */
ADC_RegularChannelConfig(ADC1, ADC_Channel_14, 1, ADC_SampleTime_13Cycles5);
/* Set injected sequencer length */
ADC_InjectedSequencerLengthConfig(ADC1, 1);
/* ADC1 injected channel Configuration */
ADC_InjectedChannelConfig(ADC1, ADC_Channel_11, 1, ADC_SampleTime_71Cycles5);
/* ADC1 injected external trigger configuration */
ADC_ExternalTrigInjectedConvConfig(ADC1, ADC_ExternalTrigInjecConv_None);
/* Enable automatic injected conversion start after regular one */
ADC_AutoInjectedConvCmd(ADC1, ENABLE);
/* Enable ADC1 DMA */
ADC_DMACmd(ADC1, ENABLE);
/* Enable ADC1 external trigger */
ADC_ExternalTrigConvCmd(ADC1, ENABLE);
/* Enable JEOC interupt */
ADC_ITConfig(ADC1, ADC_IT_JEOC, ENABLE);
/* Enable ADC1 */
ADC_Cmd(ADC1, ENABLE);
/* Enable ADC1 reset calibaration register */
ADC_ResetCalibration(ADC1);
/* Check the end of ADC1 reset calibration register */
while(ADC_GetResetCalibrationStatus(ADC1));
/* Start ADC1 calibaration */
ADC_StartCalibration(ADC1);
/* Check the end of ADC1 calibration */
while(ADC_GetCalibrationStatus(ADC1));
/* TIM1 counter enable */
TIM_Cmd(TIM1, ENABLE);
/* TIM1 main Output Enable */
TIM_CtrlPWMOutputs(TIM1, ENABLE);
/* Test on channel1 transfer complete flag */
while(!DMA_GetFlagStatus(DMA1_FLAG_TC1));
/* Clear channel1 transfer complete flag */
DMA_ClearFlag(DMA1_FLAG_TC1);
/* TIM1 counter disable */
TIM_Cmd(TIM1, DISABLE);
while (1)
{
}
}
/**
* @brief Configures the different system clocks.
* @param None
* @retval None
*/
void RCC_Configuration(void)
{
/* RCC system reset(for debug purpose) */
RCC_DeInit();
/* Enable HSE */
RCC_HSEConfig(RCC_HSE_ON);
/* Wait till HSE is ready */
HSEStartUpStatus = RCC_WaitForHSEStartUp();
if(HSEStartUpStatus == SUCCESS)
{
/* Enable Prefetch Buffer */
FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);
/* Flash 2 wait state */
FLASH_SetLatency(FLASH_Latency_2);
/* HCLK = SYSCLK */
RCC_HCLKConfig(RCC_SYSCLK_Div1);
/* PCLK2 = HCLK */
RCC_PCLK2Config(RCC_HCLK_Div1);
/* PCLK1 = HCLK/2 */
RCC_PCLK1Config(RCC_HCLK_Div2);
/* ADCCLK = PCLK2/4 */
RCC_ADCCLKConfig(RCC_PCLK2_Div4);
#ifndef STM32F10X_CL
/* PLLCLK = 8MHz * 7 = 56 MHz */
RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_7);
#else
/* Configure PLLs *********************************************************/
/* PLL2 configuration: PLL2CLK = (HSE / 5) * 8 = 40 MHz */
RCC_PREDIV2Config(RCC_PREDIV2_Div5);
RCC_PLL2Config(RCC_PLL2Mul_8);
/* Enable PLL2 */
RCC_PLL2Cmd(ENABLE);
/* Wait till PLL2 is ready */
while (RCC_GetFlagStatus(RCC_FLAG_PLL2RDY) == RESET)
{}
/* PLL configuration: PLLCLK = (PLL2 / 5) * 7 = 56 MHz */
RCC_PREDIV1Config(RCC_PREDIV1_Source_PLL2, RCC_PREDIV1_Div5);
RCC_PLLConfig(RCC_PLLSource_PREDIV1, RCC_PLLMul_7);
#endif
/* Enable PLL */
RCC_PLLCmd(ENABLE);
/* Wait till PLL is ready */
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
{
}
/* Select PLL as system clock source */
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
/* Wait till PLL is used as system clock source */
while(RCC_GetSYSCLKSource() != 0x08)
{
}
}
/* Enable peripheral clocks --------------------------------------------------*/
/* Enable DMA1 clock */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
/* Enable GPIOA, GPIOC, ADC1 and TIM1 clock */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOC |
RCC_APB2Periph_ADC1 | RCC_APB2Periph_TIM1, ENABLE);
}
/**
* @brief Configures the different GPIO ports.
* @param None
* @retval None
*/
void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
/* Configure TIM1_CH1 (PA8) as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* Configure PC.06 as output push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_Init(GPIOC, &GPIO_InitStructure);
/* Configure PC.01 and PC.04 (ADC Channel11 and Channel14) as analog input */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 | GPIO_Pin_4;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
GPIO_Init(GPIOC, &GPIO_InitStructure);
}
/**
* @brief Configures NVIC and Vector Table base location.
* @param None
* @retval None
*/
void NVIC_Configuration(void)
{
NVIC_InitTypeDef NVIC_InitStructure;
/* Enable ADC1_2 IRQChannel */
NVIC_InitStructure.NVIC_IRQChannel = ADC1_2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
}