void ADC12()
{
P6SEL = 0x0F; // Enable A/D channel inputs
ADC12CTL0 = ADC12ON+ADC12MSC+ADC12SHT0_15; // Turn on ADC12, extend sampling time
// to avoid overflow of results
ADC12CTL1 = ADC12SHP+ADC12CONSEQ_3; // Use sampling timer, repeated sequence
ADC12MCTL0 = ADC12INCH_0; // ref+=AVcc, channel = A0
ADC12MCTL1 = ADC12INCH_1+ADC12EOS; // ref+=AVcc, channel = A1
//ADC12MCTL2 = ADC12INCH_2+ADC12EOS; // ref+=AVcc, channel = A2
//ADC12MCTL3 = ADC12INCH_3+ADC12EOS; // ref+=AVcc, channel = A3, end seq.
ADC12IE = 0x02; // Enable ADC12IFG.2
ADC12CTL0 |= ADC12ENC; // Enable conversions
ADC12CTL0 |= ADC12SC; // Start convn - software trigger
}
#pragma vector=ADC12_VECTOR
__interrupt void ADC12ISR(void)
{
static unsigned int index = 0;
u16 c;
switch(__even_in_range(ADC12IV,34))
{
case 0: break; // Vector 0: No interrupt
case 2: break; // Vector 2: ADC overflow
case 4: break; // Vector 4: ADC timing overflow
case 6: break; // Vector 6: ADC12IFG0
case 10: break; // Vector 8: ADC12IFG2
case 12: break; // Vector 10: ADC12IFG3
case 8: // Vector 12: ADC12IFG1
A0results[index] = ADC12MEM0; // Move A0 results, IFG is cleared
A1results[index] = ADC12MEM1; // Move A1 results, IFG is cleared
...
case 14: break; // Vector 14: ADC12IFG4
case 16: break; // Vector 16: ADC12IFG5
case 18: break; // Vector 18: ADC12IFG6
case 20: break; // Vector 20: ADC12IFG7
case 22: break; // Vector 22: ADC12IFG8
case 24: break; // Vector 24: ADC12IFG9
case 26: break; // Vector 26: ADC12IFG10
case 28: break; // Vector 28: ADC12IFG11
case 30: break; // Vector 30: ADC12IFG12
case 32: break; // Vector 32: ADC12IFG13
case 34: break; // Vector 34: ADC12IFG14
default: break;
}
}