新型高精度时钟芯片RTL-4553[ZT]
为方便大家看原程序,给出原文网址:
http://www.avrw.com/article/art_105_421.htm
摘要:介绍EPSON公司最新推出的高精度时钟芯片RTC-4553的功能与特点。包括内部结构及引脚、功能控制和单字节的读程序。
关键词:单片机 时钟芯片 RTC-4553
现在流行的串行时钟芯片很多,如DS1302、DS1307、PCF8485等。这些芯片接口简单、价格低廉、使用方便,被广泛地采用,但这些芯片都存在时钟精度不高,易受环境影响,出现时钟混乱等缺点。本文介绍一种EPSON公司最新推出的RTC-4553时钟芯片。该芯片采用内置晶振和独特的数据方法,大大提高了时钟精度和可靠性。RTC-4553配有串行通信接口,另有30×4bit SRAM,有2000~2099的百年日历,采用14脚SOP封装,电池耗电2μA,时钟误差
串行时钟芯片的内部结构如图1所示。它包含I/O控制器、移位寄存器、命令及逻辑控制器,表态RAM、实时时钟、计数器、晶振等部分。
图2为RTC-4553的引脚图。CS0为片选脚,低电平选中;WR为读写使能口,高为读,低为写;L1~L5为工厂出厂调整精度和测试用,使用中悬空;
CS1为芯片掉电检查口,可直接与系统电源连接,芯片测到该口为低时,自动进入低功耗状态;SCK为时钟口,SIN为数据输入口,SOUT为数据输出口。另外,芯片还有1个时钟信号输出口TPOUT,该口可输出1024Hz或1/10Hz的信号,以供检测芯片的时钟精度所用。
2 功能及控制
2.1 寄存器
RTC-4553共有46×4bit寄存器。这些寄存器分3页,第1页共16个,分别为时钟寄存器和控制寄存器,如表1所列,用来存放秒、分、时、日、月、年、星期和3个特殊寄存器;第2页、第3页各有15个,共30个SRAM寄存器,页面的选择通过操作控制寄存器3的MS1、MS0位来实现。
表1
第0页
第1页
第2页
地址A3A2A1A0
功能说明
地址A3A2A1A0
功能说明
地址A3A2A1A0
0
1
2
3
4
5
6
7
8
9
0A
0B
0C
0D
0E
0F
个位秒
十位秒
个位分
十位分
个位时
十位时
星期
个位天
十位天
个位月
十位月
个位年
十位年
控制寄存器1
控制寄存器2
控制寄存器3
0
1
2
3
4
5
6
7
8
9
0A
0B
0C
0D
0E
静
态
RAM
区
0
1
2
3
4
5
6
7
8
9
0A
0B
0C
0D
0E
静
态
RAM
区
控制寄存器1:CNT1
TPS
-
CNTR
24/12
TPS——TPOUT输出时钟选择位,1输出1024Hz,0输出1/10Hz;
CNTR——时钟寄存器清零标志;
24/12——1为24小时制,0为12小时制。
控制寄存器2:
BUSY
PONC
-
-
BUSY——有进位溢出;
PONC——初始上电检测,为1表示刚上电需校时。
控制寄存器3:
-
-
MS1
MS0
MS1、MS0——页面选择位,00和01指向0页,10指向1页,11指向2页。
2.2 数据读出
在片选择中芯片,WR置高时,芯片处于读出状态,随着SCK脚上的时钟变化,内部寄存器的数据将出现在SOUT脚上。输入需要8个时钟,4个用来输入地址;输出数据也需要8个时钟,包括4个地址位4个数据位。数据在SCK上升沿输入,在下降沿输出。寄存器的地址由SIN脚输入,页面由MS0、MS1决定。图3为读时序图。
2.3 数据写入
RTC-4553采用特殊的写指令,对第0页的0D~0FH及第1页、第2页的寄存器的操作采用常规写法,地址后面的数据将原样写入寄存器中,而对时间寄存器写操作指令只能将内部的内容加1,并自动完成转换。图4为时间寄存器写时序。芯片这种独特的设计,防止了时钟区数据被意外干扰出现非法数据的可能,这正是该芯片高可靠性的原因所在。
3 应用
RTC-4553采用串行通信,与单片机接口简单,在设计中RAM区可放置少量的停电后系统需要保存的数据。CS1也可与单片机的掉电检测口相连,以便能迅速进入低功耗状态。图5以PIC单片机为例,给出连接图。
按图5给出单字节的读程序:
入口:FDE的低4位存放读地址,W的低4位存放读地址
BSF RA,WR ;读状态
BCF RA,CS0 ;选芯片
MOVLW 8
MOVWF Count ;准备发8位
LOOP:BCF RA,SCK ;SCK低电平
BCF RA,SIN
BTFSS FDE,0 ;FDE的0位为1
;则SIN口为1
GOTO LLL ;否则SIN口输出0
BSF RA,SIN
LLL:
RRF FDE,1 ;FDE右移,准备发下一位
BSF RA,SCK ;SCK高电平
DECFS2 Count
GOTO LOOP ;读指令发完
MOVLW 8 ;准备接收数据
MOVWF Count
LOOP1:
BCF RA,SCK
NOP
BSF RA,SCK
RRF W,0
BCF W,0
BTFSS RA,Sout ;读判断
GOTO LLL1
BSF W,0
LLL1:
DECFS2 Count
GOTO LOOP1
BCF RA,CS0 ;结束,关芯片
1.实验任务
(1).开机时,显示12:00:00的时间开始计时;
(2).P0.0/AD0控制“秒”的调整,每按一次加1秒;
(3).P0.1/AD1控制“分”的调整,每按一次加1分;
(4).P0.2/AD2控制“时”的调整,每按一次加1个小时;
2.电路原理图
图4.20.1
3.系统板上硬件连线
(1).把“单片机系统”区域中的P1.0-P1.7端口用8芯排线连接到“动态数码显示”区域中的A-H端口上;
(2).把“单片机系统:区域中的P3.0-P3.7端口用8芯排线连接到“动态数码显示”区域中的S1-S8端口上;
(3).把“单片机系统”区域中的P0.0/AD0、P0.1/AD1、P0.2/AD2端口分别用导线连接到“独立式键盘”区域中的SP3、SP2、SP1端口上;
4.相关基本知识
(1).动态数码显示的方法
(2).独立式按键识别过程
(3).“时”,“分”,“秒”数据送出显示处理方法
5.程序框图
6.汇编源程序
SECOND EQU 30H
MINITE EQU 31H
HOUR EQU 32H
HOURK BIT P0.0
MINITEK BIT P0.1
SECONDK BIT P0.2
DISPBUF EQU 40H
DISPBIT EQU 48H
T2SCNTA EQU 49H
T2SCNTB EQU 4AH
TEMP EQU 4BH
ORG 00H
LJMP START
ORG 0BH
LJMP INT_T0
START: MOV SECOND,#00H
MOV MINITE,#00H
MOV HOUR,#12
MOV DISPBIT,#00H
MOV T2SCNTA,#00H
MOV T2SCNTB,#00H
MOV TEMP,#0FEH
LCALL DISP
MOV TMOD,#01H
MOV TH0,#(65536-2000) / 256
MOV TL0,#(65536-2000) MOD 256
SETB TR0
SETB ET0
SETB EA
WT: JB SECONDK,NK1
LCALL DELY10MS
JB SECONDK,NK1
INC SECOND
MOV A,SECOND
CJNE A,#60,NS60
MOV SECOND,#00H
NS60: LCALL DISP
JNB SECONDK,$
NK1: JB MINITEK,NK2
LCALL DELY10MS
JB MINITEK,NK2
INC MINITE
MOV A,MINITE
CJNE A,#60,NM60
MOV MINITE,#00H
NM60: LCALL DISP
JNB MINITEK,$
NK2: JB HOURK,NK3
LCALL DELY10MS
JB HOURK,NK3
INC HOUR
MOV A,HOUR
CJNE A,#24,NH24
MOV HOUR,#00H
NH24: LCALL DISP
JNB HOURK,$
NK3: LJMP WT
DELY10MS:
MOV R6,#10
D1: MOV R7,#248
DJNZ R7,$
DJNZ R6,D1
RET
DISP:
MOV A,#DISPBUF
ADD A,#8
DEC A
MOV R1,A
MOV A,HOUR
MOV B,#10
DIV AB
MOV @R1,A
DEC R1
MOV A,B
MOV @R1,A
DEC R1
MOV A,#10
MOV @R1,A
DEC R1
MOV A,MINITE
MOV B,#10
DIV AB
MOV @R1,A
DEC R1
MOV A,B
MOV @R1,A
DEC R1
MOV A,#10
MOV @R1,A
DEC R1
MOV A,SECOND
MOV B,#10
DIV AB
MOV @R1,A
DEC R1
MOV A,B
MOV @R1,A
DEC R1
RET
INT_T0:
MOV TH0,#(65536-2000) / 256
MOV TL0,#(65536-2000) MOD 256
MOV A,#DISPBUF
ADD A,DISPBIT
MOV R0,A
MOV A,@R0
MOV DPTR,#TABLE
MOVC A,@A+DPTR
MOV P1,A
MOV A,DISPBIT
MOV DPTR,#TAB
MOVC A,@A+DPTR
MOV P3,A
INC DISPBIT
MOV A,DISPBIT
CJNE A,#08H,KNA
MOV DISPBIT,#00H
KNA: INC T2SCNTA
MOV A,T2SCNTA
CJNE A,#100,DONE
MOV T2SCNTA,#00H
INC T2SCNTB
MOV A,T2SCNTB
CJNE A,#05H,DONE
MOV T2SCNTB,#00H
INC SECOND
MOV A,SECOND
CJNE A,#60,NEXT
MOV SECOND,#00H
INC MINITE
MOV A,MINITE
CJNE A,#60,NEXT
MOV MINITE,#00H
INC HOUR
MOV A,HOUR
CJNE A,#24,NEXT
MOV HOUR,#00H
NEXT: LCALL DISP
DONE: RETI
TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH,40H
TAB: DB 0FEH,0FDH,0FBH,0F7H,0EFH,0DFH,0BFH,07FH
END
7.C语言源程序
#include
unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f,
0x66,0x6d,0x7d,0x07,
0x7f,0x6f,0x77,0x7c,
0x39,0x5e,0x79,0x71,0x00};
unsigned char dispbitcode[]={0xfe,0xfd,0xfb,0xf7,
0xef,0xdf,0xbf,0x7f};
unsigned char dispbuf[8]={0,0,16,0,0,16,0,0};
unsigned char dispbitcnt;
unsigned char second;
unsigned char minite;
unsigned char hour;
unsigned int tcnt;
unsigned char mstcnt;
unsigned char i,j;
void main(void)
{
TMOD=0x02;
TH0=0x06;
TL0=0x06;
TR0=1;
ET0=1;
EA=1;
while(1)
{
if(P0_0==0)
{
for(i=5;i>0;i--)
for(j=248;j>0;j--);
if(P0_0==0)
{
second++;
if(second==60)
{
second=0;
}
dispbuf[0]=second;
dispbuf[1]=second/10;
while(P0_0==0);
}
}
if(P0_1==0)
{
for(i=5;i>0;i--)
for(j=248;j>0;j--);
if(P0_1==0)
{
minite++;
if(minite==60)
{
minite=0;
}
dispbuf[3]=minite;
dispbuf[4]=minite/10;
while(P0_1==0);
}
}
if(P0_2==0)
{
for(i=5;i>0;i--)
for(j=248;j>0;j--);
if(P0_2==0)
{
hour++;
if(hour==24)
{
hour=0;
}
dispbuf[6]=hour;
dispbuf[7]=hour/10;
while(P0_2==0);
}
}
}
}
void t0(void) interrupt 1 using 0
{
mstcnt++;
if(mstcnt==8)
{
mstcnt=0;
P1=dispcode[dispbuf[dispbitcnt]];
P3=dispbitcode[dispbitcnt];
dispbitcnt++;
if(dispbitcnt==8)
{
dispbitcnt=0;
}
}
tcnt++;
if(tcnt==4000)
{
tcnt=0;
second++;
if(second==60)
{
second=0;
minite++;
if(minite==60)
{
minite=0;
hour++;
if(hour==24)
{
hour=0;
}
}
}
dispbuf[0]=second;
dispbuf[1]=second/10;
dispbuf[3]=minite;
dispbuf[4]=minite/10;
dispbuf[6]=hour;
dispbuf[7]=hour/10;
}
}
http://www.sydzdiy.com/MCU/example/05101910464585819_89797.html