[经验] 【OpenCV入门教程之十】 形态学图像处理(一):膨胀与腐蚀

兰博   2017-12-27 14:27 楼主
本篇文章中,我们一起探究了图像处理中,最基本的形态学运算——膨胀与腐蚀。浅墨在文章开头友情提醒,用人物照片做腐蚀和膨胀的素材图片得到的效果会比较惊悚,毁三观的,不建议尝试。。。。。。。。。。 OK,开始吧,依然是先放一张截图: 一、理论与概念讲解——从现象到本质 1.1 形态学概述 形态学(morphology)一词通常表示生物学的一个分支,该分支主要研究动植物的形态和结构。而我们图像处理中指的形态学,往往表示的是数学形态学。下面一起来了解数学形态学的概念。 数学形态学(Mathematical morphology) 是一门建立在格论和拓扑学基础之上的图像分析学科,是数学形态学图像处理的基本理论。其基本的运算包括:二值腐蚀和膨胀、二值开闭运算、骨架抽取、极限腐蚀、击中击不中变换、形态学梯度、Top-hat变换、颗粒分析、流域变换、灰值腐蚀和膨胀、灰值开闭运算、灰值形态学梯度等。 简单来讲,形态学操作就是基于形状的一系列图像处理操作。OpenCV为进行图像的形态学变换提供了快捷、方便的函数。最基本的形态学操作有二种,他们是:膨胀与腐蚀(Dilation与Erosion)。 膨胀与腐蚀能实现多种多样的功能,主要如下:
  • 消除噪声
  • 分割(isolate)出独立的图像元素,在图像中连接(join)相邻的元素。
  • 寻找图像中的明显的极大值区域或极小值区域
  • 求出图像的梯度
我们在这里给出下文会用到的,用于对比膨胀与腐蚀运算的“浅墨”字样毛笔字原图:
在进行腐蚀和膨胀的讲解之前,首先需要注意,腐蚀和膨胀是对白色部分(高亮部分)而言的,不是黑色部分。膨胀就是图像中的高亮部分进行膨胀,“领域扩张”,效果图拥有比原图更大的高亮区域。腐蚀就是原图中的高亮部分被腐蚀,“领域被蚕食”,效果图拥有比原图更小的高亮区域。 1.2 膨胀 其实,膨胀就是求局部最大值的操作。 按数学方面来说,膨胀或者腐蚀操作就是将图像(或图像的一部分区域,我们称之为A)与核(我们称之为B)进行卷积。 核可以是任何的形状和大小,它拥有一个单独定义出来的参考点,我们称其为锚点(anchorpoint)。多数情况下,核是一个小的中间带有参考点和实心正方形或者圆盘,其实,我们可以把核视为模板或者掩码。 而膨胀就是求局部最大值的操作,核B与图形卷积,即计算核B覆盖的区域的像素点的最大值,并把这个最大值赋值给参考点指定的像素。这样就会使图像中的高亮区域逐渐增长。如下图所示,这就是膨胀操作的初衷。 膨胀的数学表达式:
膨胀效果图(毛笔字):
照片膨胀效果图: 1.3 腐蚀 再来看一下腐蚀,大家应该知道,膨胀和腐蚀是一对好基友,是相反的一对操作,所以腐蚀就是求局部最小值的操作。 我们一般都会把腐蚀和膨胀对应起来理解和学习。下文就可以看到,两者的函数原型也是基本上一样的。 原理图: 腐蚀的数学表达式:
腐蚀效果图(毛笔字):
照片腐蚀效果图: 浅墨表示这张狗狗超可爱:D 二、深入——OpenCV源码分析溯源 直接上源码吧,在…\opencv\sources\modules\imgproc\src\ morph.cpp路径中 的第1353行开始就为erode(腐蚀)函数的源码,1361行为dilate(膨胀)函数的源码。 [cpp] view plain copy
    1. //-----------------------------------【erode()函数中文注释版源代码】----------------------------
    2. // 说明:以下代码为来自于计算机开源视觉库OpenCV的官方源代码
    3. // OpenCV源代码版本:2.4.8
    4. // 源码路径:…\opencv\sources\modules\imgproc\src\ morph.cpp
    5. // 源文件中如下代码的起始行数:1353行
    6. // 中文注释by浅墨
    7. //--------------------------------------------------------------------------------------------------------
    8. void cv::erode( InputArray src, OutputArraydst, InputArray kernel,
    9. Point anchor, int iterations,
    10. int borderType, constScalar& borderValue )
    11. {
    12. //调用morphOp函数,并设定标识符为MORPH_ERODE
    13. morphOp( MORPH_ERODE, src, dst, kernel, anchor, iterations, borderType,borderValue );
    14. }
[cpp] view plain copy
    1. //-----------------------------------【dilate()函数中文注释版源代码】----------------------------
    2. // 说明:以下代码为来自于计算机开源视觉库OpenCV的官方源代码
    3. // OpenCV源代码版本:2.4.8
    4. // 源码路径:…\opencv\sources\modules\imgproc\src\ morph.cpp
    5. // 源文件中如下代码的起始行数:1361行
    6. // 中文注释by浅墨
    7. //--------------------------------------------------------------------------------------------------------
    8. void cv::dilate( InputArray src,OutputArray dst, InputArray kernel,
    9. Point anchor, int iterations,
    10. int borderType, constScalar& borderValue )
    11. {
    12. //调用morphOp函数,并设定标识符为MORPH_DILATE
    13. morphOp( MORPH_DILATE, src, dst, kernel, anchor, iterations, borderType,borderValue );
    14. }
可以发现erode和dilate这两个函数内部就是调用了一下morphOp,只是他们调用morphOp时,第一个参数标识符不同,一个为MORPH_ERODE(腐蚀),一个为MORPH_DILATE(膨胀)。 morphOp函数的源码在…\opencv\sources\modules\imgproc\src\morph.cpp中的第1286行,有兴趣的朋友们可以研究研究,这里就不费时费力花篇幅展开分析了。 三、浅出——API函数快速上手 3.1 形态学膨胀——dilate函数 erode函数,使用像素邻域内的局部极大运算符来膨胀一张图片,从src输入,由dst输出。支持就地(in-place)操作。 函数原型: [cpp] view plain copy
    1. C++: void dilate(
    2. InputArray src,
    3. OutputArray dst,
    4. InputArray kernel,
    5. Point anchor=Point(-1,-1),
    6. int iterations=1,
    7. int borderType=BORDER_CONSTANT,
    8. const Scalar& borderValue=morphologyDefaultBorderValue()
    9. );
参数详解:
  • 第一个参数,InputArray类型的src,输入图像,即源图像,填Mat类的对象即可。图像通道的数量可以是任意的,但图像深度应为CV_8U,CV_16U,CV_16S,CV_32F或 CV_64F其中之一。
  • 第二个参数,OutputArray类型的dst,即目标图像,需要和源图片有一样的尺寸和类型。
  • 第三个参数,InputArray类型的kernel,膨胀操作的核。若为NULL时,表示的是使用参考点位于中心3x3的核。
我们一般使用函数 getStructuringElement配合这个参数的使用。getStructuringElement函数会返回指定形状和尺寸的结构元素(内核矩阵)。
其中,getStructuringElement函数的第一个参数表示内核的形状,我们可以选择如下三种形状之一:
  • 矩形: MORPH_RECT
  • 交叉形: MORPH_CROSS
  • 椭圆形: MORPH_ELLIPSE
而getStructuringElement函数的第二和第三个参数分别是内核的尺寸以及锚点的位置。
我们一般在调用erode以及dilate函数之前,先定义一个Mat类型的变量来获得getStructuringElement函数的返回值。对于锚点的位置,有默认值Point(-1,-1),表示锚点位于中心。且需要注意,十字形的element形状唯一依赖于锚点的位置。而在其他情况下,锚点只是影响了形态学运算结果的偏移。
getStructuringElement函数相关的调用示例代码如下: [cpp] view plain copy
  • int g_nStructElementSize = 3; //结构元素(内核矩阵)的尺寸
  • //获取自定义核
  • Mat element = getStructuringElement(MORPH_RECT,
  • Size(2*g_nStructElementSize+1,2*g_nStructElementSize+1),
  • Point( g_nStructElementSize, g_nStructElementSize ));
调用这样之后,我们便可以在接下来调用erode或dilate函数时,第三个参数填保存了getStructuringElement返回值的Mat类型变量。对应于我们上面的示例,就是填element变量。
  • 第四个参数,Point类型的anchor,锚的位置,其有默认值(-1,-1),表示锚位于中心。
  • 第五个参数,int类型的iterations,迭代使用erode()函数的次数,默认值为1。
  • 第六个参数,int类型的borderType,用于推断图像外部像素的某种边界模式。注意它有默认值BORDER_DEFAULT。
  • 第七个参数,const Scalar&类型的borderValue,当边界为常数时的边界值,有默认值morphologyDefaultBorderValue(),一般我们不用去管他。需要用到它时,可以看官方文档中的createMorphologyFilter()函数得到更详细的解释。
使用erode函数,一般我们只需要填前面的三个参数,后面的四个参数都有默认值。而且往往结合getStructuringElement一起使用。 调用范例: [cpp] view plain copy
  • //载入原图
  • Mat image = imread("1.jpg");
  • //获取自定义核
  • Mat element = getStructuringElement(MORPH_RECT, Size(15, 15));
  • Mat out;
  • //进行膨胀操作
  • dilate(image, out, element);
用上面核心代码架起来的完整程序代码: [cpp] view plain copy
    1. //-----------------------------------【头文件包含部分】---------------------------------------
    2. // 描述:包含程序所依赖的头文件
    3. //----------------------------------------------------------------------------------------------
    4. #include
    5. #include
    6. #include
    7. #include
    8. //-----------------------------------【命名空间声明部分】---------------------------------------
    9. // 描述:包含程序所使用的命名空间
    10. //-----------------------------------------------------------------------------------------------
    11. using namespace std;
    12. using namespace cv;
    13. //-----------------------------------【main( )函数】--------------------------------------------
    14. // 描述:控制台应用程序的入口函数,我们的程序从这里开始
    15. //-----------------------------------------------------------------------------------------------
    16. int main( )
    17. {
    18. //载入原图
    19. Mat image = imread("1.jpg");
    20. //创建窗口
    21. namedWindow("【原图】膨胀操作");
    22. namedWindow("【效果图】膨胀操作");
    23. //显示原图
    24. imshow("【原图】膨胀操作", image);
    25. //获取自定义核
    26. Mat element = getStructuringElement(MORPH_RECT, Size(15, 15));
    27. Mat out;
    28. //进行膨胀操作
    29. dilate(image,out, element);
    30. //显示效果图
    31. imshow("【效果图】膨胀操作", out);
    32. waitKey(0);
    33. return 0;
    34. }
运行截图: 3.2 形态学腐蚀——erode函数 erode函数,使用像素邻域内的局部极小运算符来腐蚀一张图片,从src输入,由dst输出。支持就地(in-place)操作。 看一下函数原型: [cpp] view plain copy
    1. C++: void erode(
    2. InputArray src,
    3. OutputArray dst,
    4. InputArray kernel,
    5. Point anchor=Point(-1,-1),
    6. int iterations=1,
    7. int borderType=BORDER_CONSTANT,
    8. const Scalar& borderValue=morphologyDefaultBorderValue()
    9. );
参数详解:
  • 第一个参数,InputArray类型的src,输入图像,即源图像,填Mat类的对象即可。图像通道的数量可以是任意的,但图像深度应为CV_8U,CV_16U,CV_16S,CV_32F或 CV_64F其中之一。
  • 第二个参数,OutputArray类型的dst,即目标图像,需要和源图片有一样的尺寸和类型。
  • 第三个参数,InputArray类型的kernel,腐蚀操作的内核。若为NULL时,表示的是使用参考点位于中心3x3的核。我们一般使用函数 getStructuringElement配合这个参数的使用。getStructuringElement函数会返回指定形状和尺寸的结构元素(内核矩阵)。(具体看上文中浅出部分dilate函数的第三个参数讲解部分)
  • 第四个参数,Point类型的anchor,锚的位置,其有默认值(-1,-1),表示锚位于单位(element)的中心,我们一般不用管它。
  • 第五个参数,int类型的iterations,迭代使用erode()函数的次数,默认值为1。
  • 第六个参数,int类型的borderType,用于推断图像外部像素的某种边界模式。注意它有默认值BORDER_DEFAULT。
  • 第七个参数,const Scalar&类型的borderValue,当边界为常数时的边界值,有默认值morphologyDefaultBorderValue(),一般我们不用去管他。需要用到它时,可以看官方文档中的createMorphologyFilter()函数得到更详细的解释。
同样的,使用erode函数,一般我们只需要填前面的三个参数,后面的四个参数都有默认值。而且往往结合getStructuringElement一起使用。 调用范例: [cpp] view plain copy
  • //载入原图
  • Mat image = imread("1.jpg");
  • //获取自定义核
  • Mat element = getStructuringElement(MORPH_RECT, Size(15, 15));
  • Mat out;
  • //进行腐蚀操作
  • erode(image,out, element);
用上面核心代码架起来的完整程序代码: [cpp] view plain copy
    1. //-----------------------------------【头文件包含部分】---------------------------------------
    2. // 描述:包含程序所依赖的头文件
    3. //----------------------------------------------------------------------------------------------
    4. #include <opencv2/core/core.hpp>
    5. #include<opencv2/highgui/highgui.hpp>
    6. #include<opencv2/imgproc/imgproc.hpp>
    7. #include <iostream>
    8. //-----------------------------------【命名空间声明部分】---------------------------------------
    9. // 描述:包含程序所使用的命名空间
    10. //-----------------------------------------------------------------------------------------------
    11. using namespace std;
    12. using namespace cv;
    13. //-----------------------------------【main( )函数】--------------------------------------------
    14. // 描述:控制台应用程序的入口函数,我们的程序从这里开始
    15. //-----------------------------------------------------------------------------------------------
    16. int main( )
    17. {
    18. //载入原图
    19. Matimage = imread("1.jpg");
    20. //创建窗口
    21. namedWindow("【原图】腐蚀操作");
    22. namedWindow("【效果图】腐蚀操作");
    23. //显示原图
    24. imshow("【原图】腐蚀操作", image);
    25. //获取自定义核
    26. Mat element = getStructuringElement(MORPH_RECT, Size(15, 15));
    27. Mat out;
    28. //进行腐蚀操作
    29. erode(image,out, element);
    30. //显示效果图
    31. imshow("【效果图】腐蚀操作", out);
    32. waitKey(0);
    33. return 0;
    34. }
运行结果: 四、综合示例——在实战中熟稔 依然是每篇文章都会配给大家的一个详细注释的博文配套示例程序,把这篇文章中介绍的知识点以代码为载体,展现给大家。 这个示例程序中的效果图窗口有两个滚动条,顾名思义,第一个滚动条“腐蚀/膨胀”用于在腐蚀/膨胀之间进行切换;第二个滚动条”内核尺寸”用于调节形态学操作时的内核尺寸,以得到效果不同的图像,有一定的可玩性。废话不多说,上代码吧: [cpp] view plain copy
    1. //-----------------------------------【程序说明】----------------------------------------------
    2. // 程序名称::《【OpenCV入门教程之十】形态学图像处理(一):膨胀与腐蚀 》 博文配套源码
    3. // 开发所用IDE版本:Visual Studio 2010
    4. // 开发所用OpenCV版本: 2.4.8
    5. // 2014年4月14日 Create by 浅墨
    6. // 浅墨的微博:@浅墨_毛星云
    7. //------------------------------------------------------------------------------------------------
    8. //-----------------------------------【头文件包含部分】---------------------------------------
    9. // 描述:包含程序所依赖的头文件
    10. //----------------------------------------------------------------------------------------------
    11. #include <opencv2/opencv.hpp>
    12. #include <opencv2/highgui/highgui.hpp>
    13. #include<opencv2/imgproc/imgproc.hpp>
    14. #include <iostream>
    15. //-----------------------------------【命名空间声明部分】---------------------------------------
    16. // 描述:包含程序所使用的命名空间
    17. //-----------------------------------------------------------------------------------------------
    18. using namespace std;
    19. using namespace cv;
    20. //-----------------------------------【全局变量声明部分】--------------------------------------
    21. // 描述:全局变量声明
    22. //-----------------------------------------------------------------------------------------------
    23. Mat g_srcImage, g_dstImage;//原始图和效果图
    24. int g_nTrackbarNumer = 0;//0表示腐蚀erode, 1表示膨胀dilate
    25. int g_nStructElementSize = 3; //结构元素(内核矩阵)的尺寸
    26. //-----------------------------------【全局函数声明部分】--------------------------------------
    27. // 描述:全局函数声明
    28. //-----------------------------------------------------------------------------------------------
    29. void Process();//膨胀和腐蚀的处理函数
    30. void on_TrackbarNumChange(int, void *);//回调函数
    31. void on_ElementSizeChange(int, void *);//回调函数
    32. //-----------------------------------【main( )函数】--------------------------------------------
    33. // 描述:控制台应用程序的入口函数,我们的程序从这里开始
    34. //-----------------------------------------------------------------------------------------------
    35. int main( )
    36. {
    37. //改变console字体颜色
    38. system("color5E");
    39. //载入原图
    40. g_srcImage= imread("1.jpg");
    41. if(!g_srcImage.data ) { printf("Oh,no,读取srcImage错误~!\n"); return false; }
    42. //显示原始图
    43. namedWindow("【原始图】");
    44. imshow("【原始图】", g_srcImage);
    45. //进行初次腐蚀操作并显示效果图
    46. namedWindow("【效果图】");
    47. //获取自定义核
    48. Mat element = getStructuringElement(MORPH_RECT, Size(2*g_nStructElementSize+1,2*g_nStructElementSize+1),Point( g_nStructElementSize, g_nStructElementSize ));
    49. erode(g_srcImage,g_dstImage, element);
    50. imshow("【效果图】", g_dstImage);
    51. //创建轨迹条
    52. createTrackbar("腐蚀/膨胀", "【效果图】", &g_nTrackbarNumer, 1, on_TrackbarNumChange);
    53. createTrackbar("内核尺寸", "【效果图】",&g_nStructElementSize, 21, on_ElementSizeChange);
    54. //输出一些帮助信息
    55. cout<<endl<<"\t嗯。运行成功,请调整滚动条观察图像效果~\n\n"
    56. <<"\t按下“q”键时,程序退出~!\n"
    57. <<"\n\n\t\t\t\tby浅墨";
    58. //轮询获取按键信息,若下q键,程序退出
    59. while(char(waitKey(1))!= 'q') {}
    60. return 0;
    61. }
    62. //-----------------------------【Process( )函数】------------------------------------
    63. // 描述:进行自定义的腐蚀和膨胀操作
    64. //-----------------------------------------------------------------------------------------
    65. void Process()
    66. {
    67. //获取自定义核
    68. Mat element = getStructuringElement(MORPH_RECT, Size(2*g_nStructElementSize+1,2*g_nStructElementSize+1),Point( g_nStructElementSize, g_nStructElementSize ));
    69. //进行腐蚀或膨胀操作
    70. if(g_nTrackbarNumer== 0) {
    71. erode(g_srcImage,g_dstImage, element);
    72. }
    73. else{
    74. dilate(g_srcImage,g_dstImage, element);
    75. }
    76. //显示效果图
    77. imshow("【效果图】", g_dstImage);
    78. }
    79. //-----------------------------【on_TrackbarNumChange( )函数】------------------------------------
    80. // 描述:腐蚀和膨胀之间切换开关的回调函数
    81. //-----------------------------------------------------------------------------------------------------
    82. void on_TrackbarNumChange(int, void *)
    83. {
    84. //腐蚀和膨胀之间效果已经切换,回调函数体内需调用一次Process函数,使改变后的效果立即生效并显示出来
    85. Process();
    86. }
    87. //-----------------------------【on_ElementSizeChange( )函数】-------------------------------------
    88. // 描述:腐蚀和膨胀操作内核改变时的回调函数
    89. //-----------------------------------------------------------------------------------------------------
    90. void on_ElementSizeChange(int, void *)
    91. {
    92. //内核尺寸已改变,回调函数体内需调用一次Process函数,使改变后的效果立即生效并显示出来
    93. Process();
    94. }
放出一些效果图吧。原始图: 膨胀效果图: 腐蚀效果图: 腐蚀和膨胀得到的图,都特有喜感,但千变万变,还是原图好看:
本帖最后由 兰博 于 2017-12-27 14:28 编辑

回复评论

暂无评论,赶紧抢沙发吧
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 京公网安备 11010802033920号
    写回复