基于SOC应用的运算放大器IP核设计
2.2 Rail-to-Rail输出级及共栅补偿技术 在Rail-to-Rail输出级中,AB 类传输函数可通过保持输出管栅极间电压恒定来实现。采用带有前馈AB类控制的推挽输出结构,它能够在低压下实现全摆幅的输出,并 且可以在保证低失真的情况下,得到较高的电源效率。
用晶体管耦合直接前馈通路实现的AB 类前馈式输出级如图2 所示。M7、M8为Rail-to-Rail 输出管,M1、M2 组成晶体管耦合的AB 类控制电路。Iin1和Iin2为同相位的小信号电流源。电路中的两个回路M2-M7 和M1-M8控制输出管的静态电流。当一个输出管电流非常大时,另一个输出管能够保持一个最小值,而不是截止为零,避免了从截止到导通所需要的时间延迟,也减少了交越失真。
通常Rail-to-Rail运放是多级放大器,需要两个(或两个以上) 电容作为Miller 补偿以提供足够的相位裕度,这不仅会占用大量的面积,也限制了单位增益带宽;而且多级放大器作为输出缓冲器时,电路的稳定性还容易随负载电容大小的变化而改变,产生震荡。Miller补偿要求在M23 和M24 栅漏两端分别接入两个补偿电容,其输出极点可简单的表示为(假设gm7等于gm8, CL 是负载电容) :
由于电容的前馈通路,Miller 补偿引入了一个右半平面零点zc,该零点减小了相位裕度,同时也限制了单位增益带宽。
如图2所示,针对特殊的AB类输出级,采用M9,M10和电容CC组成的共栅频率补偿结构,可以阻止通过电容的前馈电流,并将右半平面零点移至高频,同时也减少了一个补偿电容,节省了芯片面积。假设只考虑晶体管M8 所构成的NMOS 共源输出级,通过小信号分析可以得到,该电路引入了一个位于左半平面的零点:
整个放大器主极点可以近似等于:
其中Rout1为第一级放大电路的输出电阻,RL为负载电阻,对于较大的RL ,输出极点可以近似为:
从式中看出,输出极点增大了约gm10Rout1倍,增加M10 (和M9) 的跨导还可将此极点移至高频,因此采用较小CC就能实现频率补偿,获得较高的单位增益带宽。但是,增加gm9, gm10将会导致M9 和M10 的漏电流增加,从而减少流经M1 和M2 的电流,进一步减小M1和M2的源漏端的饱和压降Vdsat,而流经M7和M8的电流将增加,输出阻抗减小,最终导致放大器开环增益的降低。此外,增大gm9 , gm10还会增加等效的输入噪声和放大器的功耗。因此M9、M10的设计只需使得两个极点分离足以满足稳定性所需的相位裕度即可。流经M9 和M10 的漏电流总是相等,M9和M10的引入并不会影响放大器总体的失配;同时(7)式也说明采用较小的补偿电容CC 还可以减少负载电容CL 的增加对电路频率特性的影响。
3整体电路实现与仿真
综上所述,电路的整体实现结构如图3所示,由晶体管M18-M22构成的电流镜和由M28-M31构成的电流镜为整个电路提供偏置电流。为了减小输入失调,尽量增大输入晶体管面积,减小其有效栅源电压,同时尽可能减小电流镜和电流源的宽长比。通过减小电流开关M15的宽长比将失调变化扩展到整个共模输入范围,可以增加共模抑制比。
电路采用TSMC 0.18μm 1P6M CMOS数模混合工艺,基于BSIM3V3 Spice模型,10pF电容负载的条件下,用Hspice对整个电路进行仿真,电源电压为1.8V,偏置电压为0.8V。
输入级跨导随输入共模电压变化的结果如图4所示,可以看出,输入级跨导大约为290μS,在整个输入共模电压范围内只变化3%,基本保持恒定。在0~0.4V,PMOS差分输入对导通,NMOS差分输入对截止,输入级跨导为PMOS输入对的跨导;在0.9~1.8V,输入级跨导为NMOS输入对的跨导;在0.4~0.9V,PMOS和NMOS差分输入对同时导通,电流开关抽取电流会引起跨导变化,主要是由NMOS和PMOS差分输入对的宽长比以及弱反型斜率因子的不同引起的。
该运放的频率特性如图5所示,整个电路的直流开环增益为103.5dB,相位裕度为60.5度,单位增益带宽为18.9MHz。相比之下,采用传统miller补偿其带宽只有9.5MHz。
整个放大器的设计结果如下表所示,
运算放大器的整体性能较好,并且能够在1.8V低电压下工作,功耗低,芯片面积也大大节省。
4结束语
随着电源电压的降低以及芯片集成度的增加, 以
IP核形式的Rail to Rail运算放大器设计较有优势,它可以节省成本和缩短系统设计周期。本文基于0.18μm CMOS工艺设计了一个恒跨导Rail to Rail运算放大器,整个电路结构简单紧凑,功耗低,非常适合做成
SOC的IP核。
本文作者创新点:
(1) 从IP核的角度进行运算放大器的设计,使其更具有应用价值。
(2) 采用一倍电流镜方式进行跨导控制,和新型的共栅频率补偿技术,使整个电路结构简单紧凑,适合与其它电路模块集成应用于SOC。
参考文献:
[1] Trung K N, Sang G L. Low-voltage, low-Power CMOS operation transconductance amplifier with Rail-to-Rail differential input range [J]. IEEE ISCAS. 2006; 10:1639-1642
[2] 候卫卫,冯全源.一种高性能单位增益放大器[J].微计算机信息,2007;2-2:291-293
[3] Juan. M. Carrillo, Francisco J, Duque-carrillo, et al. Constant-gm constant-slew-rate high-bandwidth low-voltage Rail-to-Rail CMOS input stage for VLSI cell libraries [J]. IEEE International Symposium on Circuits and Systems, 2003; 38(1): 165-168
[4] Loikkanen M, Kostamovaara J. Low voltage CMOS power amplifier with rail-to-rail input and output [J]. Analog Integral Circuits Process, 2006, 46(2) :183
[5] 王为之,靳东明. 一种采用共栅频率补偿的轨到轨输入/输出放大器[J]. 半导体学报,2006;27(11):2026-2028
[6] 杨银堂,李晓娟,朱樟明等. 低压低功耗运算放大器结构设计技术[J]. 电路与系统学报,2005;10(4):95-101