[uCOS/uCGUI] 转来的一个ucos在51单片机上面跑的例子

njlianjian   2008-9-26 09:10 楼主
前言

想了很久,要不要写这篇文章?最后觉得对操作系统感兴趣的人还是很多,写吧.我不一定能造出玉,但我可以抛出砖.

包括我在内的很多人都对51使用操作系统呈悲观态度,因为51的片上资源太少.但对于很多要求不高的系统来说,使用操作系统可以使代码变得更直观,易于维护,所以在51上仍有操作系统的生存机会.

流行的uCos,Tiny51等,其实都不适合在2051这样的片子上用,占资源较多,唯有自已动手,以不变应万变,才能让51也有操作系统可用.这篇贴子的目的,是教会大家如何现场写一个OS,而不是给大家提供一个OS版本.提供的所有代码,也都是示例代码,所以不要因为它没什么功能就说LAJI之类的话.如果把功能写全了,一来估计你也不想看了,二来也失去灵活性没有价值了.


下面的贴一个示例出来,可以清楚的看到,OS本身只有不到10行源代码,编译后的目标代码60字节,任务切换消耗为20个机器周期.相比之下,KEIL内嵌的TINY51目标代码为800字节,切换消耗100~700周期.唯一不足之处是,每个任务要占用掉十几字节的堆栈,所以任务数不能太多,用在128B内存的51里有点难度,但对于52来说问题不大.这套代码在36M主频的STC12C4052上实测,切换任务仅需2uS.


#include   

#define MAX_TASKS 2       //任务槽个数.必须和实际任务数一至  
#define MAX_TASK_DEP 12   //最大栈深.最低不得少于2个,保守值为12.  
unsigned char idata task_stack[MAX_TASKS][MAX_TASK_DEP];//任务堆栈.  
unsigned char task_id;    //当前活动任务号  


//任务切换函数(任务调度器)  
void task_switch(){  
        task_sp[task_id] = SP;  

        if(++task_id == MAX_TASKS)  
                task_id = 0;  

        SP = task_sp[task_id];  
}  

//任务装入函数.将指定的函数(参数1)装入指定(参数2)的任务槽中.如果该槽中原来就有任务,则原任务丢失,但系统本身不会发生错误.  
void task_load(unsigned int fn, unsigned char tid){  
        task_sp[tid] = task_stack[tid] + 1;  
        task_stack[tid][0] = (unsigned int)fn & 0xff;  
        task_stack[tid][1] = (unsigned int)fn >> 8;  
}  

//从指定的任务开始运行任务调度.调用该宏后,将永不返回.  
#define os_start(tid) {task_id = tid,SP = task_sp[tid];return;}  




/*============================以下为测试代码============================*/  

void task1(){  
        static unsigned char i;  
        while(1){  
                i++;  
                task_switch();//编译后在这里打上断点  
        }  
}  

void task2(){  
        static unsigned char j;  
        while(1){  
                j+=2;  
                task_switch();//编译后在这里打上断点  
        }  
}  

void main(){  
        //这里装载了两个任务,因此在定义MAX_TASKS时也必须定义为2  
        task_load(task1, 0);//将task1函数装入0号槽  
        task_load(task2, 1);//将task2函数装入1号槽  
        os_start(0);  
}  




这样一个简单的多任务系统虽然不能称得上真正的操作系统,但只要你了解了它的原理,就能轻易地将它扩展得非常强大,想知道要如何做吗?

[ 本帖最后由 njlianjian 于 2008-9-26 09:16 编辑 ]

回复评论 (60)

2推荐 njlianjian 

一.什么是操作系统?



人脑比较容易接受"类比"这种表达方式,我就用"公交系统"来类比"操作系统"吧.

当我们要解决一个问题的时候,是用某种处理手段去完成它,这就是我们常说的"方法",计算机里叫"程序"(有时候也可以叫它"算法").
以出行为例,当我们要从A地走到B地的时候,可以走着去,也可以飞着去,可以走直线,也可以绕弯路,只要能从A地到B地,都叫作方法.这种从A地到B的需求,相当于计算机里的"任务",而实现从A地到B地的方法,叫作"任务处理流程"

很显然,这些走法中,并不是每种都合理,有些傻子都会采用的,有些是傻子都不采会用的.用计算机的话来说就是,有的任务处理流程好,有的任务处理流程好,有的处理流程差.
可以归纳出这么几种真正算得上方法的方法:
有些走法比较快速,适合于赶时间的人;有些走法比较省事,适合于懒人;有些走法比较便宜,适合于穷人.
用计算机的话说就是,有些省CPU,有些流程简单,有些对系统资源要求低.

现在我们可以看到一个问题:
如果全世界所有的资源给你一个人用(单任务独占全部资源),那最适合你需求的方法就是好方法.但事实上要外出的人很多,例如10个人(10个任务),却只有1辆车(1套资源),这叫作"资源争用".
如果每个人都要使用最适合他需求的方法,那司机就只好给他们一人跑一趟了,而在任一时刻里,车上只有一个乘客.这叫作"顺序执行",我们可以看到这种方法对系统资源的浪费是严重的.
如果我们没有法力将1台车变成10台车来送这10个人,就只好制定一些机制和约定,让1台车看起来像10台车,来解决这个问题的办法想必大家都知道,那就是制定公交线路.
最简单的办法是将所有旅客需要走的起点与终点串成一条线,车在这条线上开,乘客则自已决定上下车.这就是最简单的公交线路.它很差劲,但起码解决客人们对车争用.对应到计算机里,就是把所有任务的代码混在一起执行.
这样做既不优异雅,也没效率,于是司机想了个办法,把这些客户叫到一起商量,将所有客人出行的起点与终点罗列出来,统计这些线路的使用频度,然后制定出公交线路:有些路线可以合并起来成为一条线路,而那些不能合并的路线,则另行开辟行车车次,这叫作"任务定义".另外,对于人多路线,车次排多点,时间上也优先安排,这叫作"任务优先级".
经过这样的安排后,虽然仍只有一辆车,但运载能力却大多了.这套车次/路线的按排,就是一套"公交系统".哈,知道什么叫操作系统了吧?它也就是这么样的一种约定.




操作系统:


我们先回过头归纳一下:
汽车                                            系统资源.主要指的是CPU,当然还有其它,比如内存,定时器,中断源等.
客户出行                                        任务
正在走的路线                                    进程
一个一个的运送旅客                              顺序执行
同时运送所有旅客                                多任务并行
按不同的使用频度制定路线并优先跑较繁忙的路线    任务优先级


计算机内有各种资源,单从硬件上说,就有CPU,内存,定时器,中断源,I/O端口等.而且还会派生出来很多软件资源,例如消息池.
操作系统的存在,就是为了让这些资源能被合理地分配.
最后我们来总结一下,所谓操作系统,以我们目前权宜的理解就是:为"解决计算机资源争用而制定出的一种约定".
点赞  2008-9-26 09:11
二.51上的操作系统

对于一个操作系统来说,最重要的莫过于并行多任务.在这里要澄清一下,不要拿当年的DOS来说事,时代不同了.况且当年IBM和小比尔着急将PC搬上市,所以才抄袭PLM(好象是叫这个名吧?记不太清)搞了个今天看来很"粗制滥造"的DOS出来.看看当时真正的操作系统---UNIX,它还在纸上时就已经是多任务的了.

对于我们PC来说,要实现多任务并不是什么问题,但换到MCU却很头痛:

1.系统资源少
在PC上,CPU主频以G为单位,内存以GB为单位,而MCU的主频通常只有十几M,内存则是Byts.在这么少的资源上同时运行多个任务,就意味着操作系统必须尽可能的少占用硬件资源.
2.任务实时性要求高
PC并不需要太关心实时性,因为PC上几乎所有的实时任务都被专门的硬件所接管,例如所有的声卡网卡显示上都内置有DSP以及大量的缓存.CPU只需坐在那里指手划脚告诉这些板卡如何应付实时信息就行了.
而MCU不同,实时信息是靠CPU来处理的,缓存也非常有限,甚至没有缓存.一旦信息到达,CPU必须在极短的时间内响应,否则信息就会丢失.
就拿串口通信来举例,在标准的PC架构里,巨大的内存允许将信息保存足够长的时间.而对于MCU来说内存有限,例如51仅有128字节内存,还要扣除掉寄存器组占用掉的8~32个字节,所以通常都仅用几个字节来缓冲.当然,你可以将数据的接收与处理的过程合并,但对于一个操作系统来说,不推荐这么做.
假定以115200bps通信速率向MCU传数据,则每个字节的传送时间约为9uS,假定缓存为8字节,则串口处理任务必须在70uS内响应.


这两个问题都指向了同一种解决思路:操作系统必须轻量轻量再轻量,最好是不占资源(那当然是做梦啦).

可用于MCU的操作系统很多,但适合51(这里的51专指无扩展内存的51)几乎没有.前阵子见过一个"圈圈操作系统",那是我所见过的操作系统里最轻量的,但仍有改进的余地.

很多人认为,51根本不适合使用操作系统.其实我对这种说法并不完全接受,否则也没有这篇文章了.
我的看法是,51不适合采用"通用操作系统".所谓通用操作系统就是,不论你是什么样的应用需求,也不管你用什么芯片,只要你是51,通通用同一个操作系统.

这种想法对于PC来说没问题,对于嵌入式来说也不错,对AVR来说还凑合,而对于51这种"贫穷型"的MCU来说,不行.
怎样行?量体裁衣,现场根据需求构建一个操作系统出来!

看到这里,估计很多人要翻白眼了,大体上两种:
1.操作系统那么复杂,说造就造,当自已是神了?
2.操作系统那么复杂,现场造一个会不会出BUG?
哈哈,看清楚了?问题出在"复杂"上面,如果操作系统不复杂,问题不就解决了?

事实上,很多人对操作系统的理解是片面的,操作系统不一定要做得很复杂很全面,就算仅个多任务并行管理能力,你也可以称它操作系统.
只要你对多任务并行的原理有所了解,就不难现场写一个出来,而一旦你做到了这一点,为各任务间安排通信约定,使之发展成一个为你的应用系统量身定做的操作系统也就不难了.

为了加深对操作系统的理解,可以看一看<<演变>>这份PPT,让你充分了解一个并行多任务是如何一步步从顺序流程演变过来的.里面还提到了很多人都在用的"状态机",你会发现操作系统跟状态机从原理上其实是多么相似.会用状态机写程序,都能写出操作系统.
点赞  2008-9-26 09:12
三.我的第一个操作系统


直接进入主题,先贴一个操作系统的示范出来.大家可以看到,原来操作系统可以做得么简单.
当然,这里要申明一下,这玩意儿其实算不上真正的操作系统,它除了并行多任务并行外根本没有别的功能.但凡事都从简单开始,搞懂了它,就能根据应用需求,将它扩展成一个真正的操作系统.

好了,代码来了.
将下面的代码直接放到KEIL里编译,在每个task?()函数的"task_switch();"那里打上断点,就可以看到它们的确是"同时"在执行的.


#include

#define MAX_TASKS 2       //任务槽个数.必须和实际任务数一至
#define MAX_TASK_DEP 12   //最大栈深.最低不得少于2个,保守值为12.
unsigned char idata task_stack[MAX_TASKS][MAX_TASK_DEP];//任务堆栈.
unsigned char task_id;    //当前活动任务号


//任务切换函数(任务调度器)
void task_switch(){
        task_sp[task_id] = SP;

        if(++task_id == MAX_TASKS)
                task_id = 0;

        SP = task_sp[task_id];
}

//任务装入函数.将指定的函数(参数1)装入指定(参数2)的任务槽中.如果该槽中原来就有任务,则原任务丢失,但系统本身不会发生错误.
void task_load(unsigned int fn, unsigned char tid){
        task_sp[tid] = task_stack[tid] + 1;
        task_stack[tid][0] = (unsigned int)fn & 0xff;
        task_stack[tid][1] = (unsigned int)fn >> 8;
}

//从指定的任务开始运行任务调度.调用该宏后,将永不返回.
#define os_start(tid) {task_id = tid,SP = task_sp[tid];return;}




/*============================以下为测试代码============================*/

void task1(){
        static unsigned char i;
        while(1){
                i++;
                task_switch();//编译后在这里打上断点
        }
}

void task2(){
        static unsigned char j;
        while(1){
                j+=2;
                task_switch();//编译后在这里打上断点
        }
}

void main(){
        //这里装载了两个任务,因此在定义MAX_TASKS时也必须定义为2
        task_load(task1, 0);//将task1函数装入0号槽
        task_load(task2, 1);//将task2函数装入1号槽
        os_start(0);
}



限于篇幅我已经将代码作了简化,并删掉了大部分注释,大家可以直接下载源码包,里面完整的注解,并带KEIL工程文件,断点也打好了,直接按ctrl+f5就行了.




现在来看看这个多任务系统的原理:

这个多任务系统准确来说,叫作"协同式多任务".
所谓"协同式",指的是当一个任务持续运行而不释放资源时,其它任务是没有任何机会和方式获得运行机会,除非该任务主动释放CPU.
在本例里,释放CPU是靠task_switch()来完成的.task_switch()函数是一个很特殊的函数,我们可以称它为"任务切换器".
要清楚任务是如何切换的,首先要回顾一下堆栈的相关知识.

有个很简单的问题,因为它太简单了,所以相信大家都没留意过:
我们知道,不论是CALL还是JMP,都是将当前的程序流打断,请问CALL和JMP的区别是什么?
你会说:CALL可以RET,JMP不行.没错,但原因是啥呢?为啥CALL过去的就可以用RET跳回来,JMP过去的就不能用RET来跳回呢?

很显然,CALL通过某种方法保存了打断前的某些信息,而在返回断点前执行的RET指令,就是用于取回这些信息.
不用多说,大家都知道,"某些信息"就是PC指针,而"某种方法"就是压栈.
很幸运,在51里,堆栈及堆栈指针都是可被任意修改的,只要你不怕死.那么假如在执行RET前将堆栈修改一下会如何?往下看:
当程序执行CALL后,在子程序里将堆栈刚才压入的断点地址清除掉,并将一个函数的地址压入,那么执行完RET后,程序就跳到这个函数去了.
事实上,只要我们在RET前将堆栈改掉,就能将程序跳到任务地方去,而不限于CALL里压入的地址.

重点来了......
首先我们得为每个任务单独开一块内存,这块内存专用于作为对应的任务的堆栈,想将CPU交给哪个任务,只需将栈指针指向谁内存块就行了.
接下来我们构造一个这样的函数:

当任务调用该函数时,将当前的堆栈指针保存一个变量里,并换上另一个任务的堆栈指针.这就是任务调度器了.

OK了,现在我们只要正确的填充好这几个堆栈的原始内容,再调用这个函数,这个任务调度就能运行起来了.
那么这几个堆栈里的原始内容是哪里来的呢?这就是"任务装载"函数要干的事了.

在启动任务调度前将各个任务函数的入口地址放在上面所说的"任务专用的内存块"里就行了!对了,顺便说一下,这个"任务专用的内存块"叫作"私栈",私栈的意思就是说,每个任务的堆栈都是私有的,每个任务都有一个自已的堆栈.

话都说到这份上了,相信大家也明白要怎么做了:

1.分配若干个内存块,每个内存块为若干字节:
这里所说的"若干个内存块"就是私栈,要想同时运行几少个任务就得分配多少块.而"每个子内存块若干字节"就是栈深.记住,每调一层子程序需要2字节.如果不考虑中断,4层调用深度,也就是8字节栈深应该差不多了.

unsigned char idata task_stack[MAX_TASKS][MAX_TASK_DEP]

当然,还有件事不能忘,就是堆指针的保存处.不然光有堆栈怎么知道应该从哪个地址取数据啊
unsigned char idata task_sp[MAX_TASKS]

上面两项用于装任务信息的区域,我们给它个概念叫"任务槽".有些人叫它"任务堆",我觉得还是"槽"比较直观

对了,还有任务号.不然怎么知道当前运行的是哪个任务呢?
unsigned char task_id
当前运行存放在1号槽的任务时,这个值就是1,运行2号槽的任务时,这个值就是2....

2.构造任务调度函函数:
void task_switch(){
        task_sp[task_id] = SP;//保存当前任务的栈指针

        if(++task_id == MAX_TASKS)//任务号切换到下一个任务
                task_id = 0;

        SP = task_sp[task_id];//将系统的栈指针指向下个任务的私栈.
}


3.装载任务:
将各任务的函数地址的低字节和高字节分别入在
task_stack[任务号][0]和task_stack[任务号][1]中:

为了便于使用,写一个函数:  task_load(函数名, 任务号)

void task_load(unsigned int fn, unsigned char tid){
        task_sp[tid] = task_stack[tid] + 1;
        task_stack[tid][0] = (unsigned int)fn & 0xff;
        task_stack[tid][1] = (unsigned int)fn >> 8;
}

4.启动任务调度器:
将栈指针指向任意一个任务的私栈,执行RET指令.注意,这可很有学问的哦,没玩过堆栈的人脑子有点转不弯:这一RET,RET到哪去了?嘿嘿,别忘了在RET前已经将堆栈指针指向一个函数的入口了.你别把RET看成RET,你把它看成是另一种类型的JMP就好理解了.

SP = task_sp[任务号];
return;

做完这4件事后,任务"并行"执行就开始了.你可以象写普通函数一个写任务函数,只需(目前可以这么说)注意在适当的时候(例如以前调延时的地方)调用一下task_switch(),以让出CPU控制权给别的任务就行了.


最后说下效率问题.
这个多任务系统的开销是每次切换消耗20个机器周期(CALL和RET都算在内了),贵吗?不算贵,对于很多用状态机方式实现的多任务系统来说,其实效率还没这么高--- case switch和if()可不像你想像中那么便宜.

关于内存的消耗我要说的是,当然不能否认这种多任务机制的确很占内存.但建议大家不要老盯着编译器下面的那行字"DATA = XXXbyte".那个值没意义,堆栈没算进去.关于比较省内存多任务机制,我将来会说到.
概括来说,这个多任务系统适用于实时性要求较高而内存需求不大的应用场合,我在运行于36M主频的STC12C4052上实测了一把,切换一个任务不到3微秒.


下回我们讲讲用KEIL写多任务函数时要注意的事项.
下下回我们讲讲如何增强这个多任务系统,跑步进入操作系统时代.
点赞  2008-9-26 09:12
四.用KEIL写多任务系统的技巧与注意事项

C51编译器很多,KEIL是其中比较流行的一种.我列出的所有例子都必须在KEIL中使用.为何?不是因为KEIL好所以用它(当然它的确很棒),而是因为这里面用到了KEIL的一些特性,如果换到其它编译器下,通过编译的倒不是问题,但运行起来可能是堆栈错位,上下文丢失等各种要命的错误,因为每种编译器的特性并不相同.所以在这里先说清楚这一点.
但是,我开头已经说了,这套帖子的主要目的是阐述原理,只要你能把这几个例子消化掉,那么也能够自已动手写出适合其它编译器的OS.

好了,说说KEIL的特性吧,先看下面的函数:

sbit sigl = P1^7;
void func1(){
        register char data i;
        i = 5;
        do{
                sigl = !sigl;
        }while(--i);
}

你会说,这个函数没什么特别的嘛!呵呵,别着急,你将它编译了,然后展开汇编代码再看看:

   193: void func1(){  
   194:         register char data i;  
   195:         i = 5;  
C:0x00C3    7F05     MOV      R7,#0x05
   196:         do{  
   197:                 sigl = !sigl;  
C:0x00C5    B297     CPL      sigl(0x90.7)
   198:         }while(--i);  
C:0x00C7    DFFC     DJNZ     R7,C:00C5
   199: }  
C:0x00C9    22       RET      

看清楚了没?这个函数里用到了R7,却没有对R7进行保护!
有人会跳起来了:这有什么值得奇怪的,因为上层函数里没用到R7啊.呵呵,你说的没错,但只说对了一半:事实上,KEIL编译器里作了约定,在调子函数前会尽可能释放掉所有寄存器.通常性况下,除了中断函数外,其它函数里都可以任意修改所有寄存器而无需先压栈保护(其实并不是这样,但现在暂时这样认为,饭要一口一口吃嘛,我很快会说到的).
这个特性有什么用呢?有!当我们调用任务切换函数时,要保护的对象里可以把所有的寄存器排除掉了,就是说,只需要保护堆栈即可!

现在我们回过头来看看之前例子里的任务切换函数:

void task_switch(){
        task_sp[task_id] = SP;//保存当前任务的栈指针

        if(++task_id == MAX_TASKS)//任务号切换到下一个任务
                task_id = 0;

        SP = task_sp[task_id];//将系统的栈指针指向下个任务的私栈.
}

看到没,一个寄存器也没保护,展开汇编看看,的确没保护寄存器.


好了,现在要给大家泼冷水了,看下面两个函数:

void func1(){
        register char data i;
        i = 5;
        do{
                sigl = !sigl;
        }while(--i);
}
void func2(){
        register char data i;
        i = 5;
        do{
                func1();
        }while(--i);
}

父函数fun2()里调用func1(),展开汇编代码看看:
   193: void func1(){  
   194:         register char data i;  
   195:         i = 5;  
C:0x00C3    7F05     MOV      R7,#0x05
   196:         do{  
   197:                 sigl = !sigl;  
C:0x00C5    B297     CPL      sigl(0x90.7)
   198:         }while(--i);  
C:0x00C7    DFFC     DJNZ     R7,C:00C5
   199: }  
C:0x00C9    22       RET      
   200: void func2(){  
   201:         register char data i;  
   202:         i = 5;  
C:0x00CA    7E05     MOV      R6,#0x05
   203:         do{  
   204:                 func1();  
C:0x00CC    11C3     ACALL    func1(C:00C3)
   205:         }while(--i);  
C:0x00CE    DEFC     DJNZ     R6,C:00CC
   206: }  
C:0x00D0    22       RET      

看清楚没?函数func2()里的变量使用了寄存器R6,而在func1和func2里都没保护.
听到这里,你可能又要跳一跳了:func1()里并没有用到R6,干嘛要保护?没错,但编译器是怎么知道func1()没用到R6的呢?是从调用关系里推测出来的.
一点都没错,KEIL会根据函数间的直接调用关系为各函数分配寄存器,既不用保护,又不会冲突,KEIL好棒哦!!等一下,先别高兴,换到多任务的环境里再试试:

void func1(){
        register char data i;
        i = 5;
        do{
                sigl = !sigl;
        }while(--i);
}
void func2(){
        register char data i;
        i = 5;
        do{
                sigl = !sigl;
        }while(--i);
}

展开汇编代码看看:

   193: void func1(){  
   194:         register char data i;  
   195:         i = 5;  
C:0x00C3    7F05     MOV      R7,#0x05
   196:         do{  
   197:                 sigl = !sigl;  
C:0x00C5    B297     CPL      sigl(0x90.7)
   198:         }while(--i);  
C:0x00C7    DFFC     DJNZ     R7,C:00C5
   199: }  
C:0x00C9    22       RET      
   200: void func2(){  
   201:         register char data i;  
   202:         i = 5;  
C:0x00CA    7F05     MOV      R7,#0x05
   203:         do{  
   204:                 sigl = !sigl;  
C:0x00CC    B297     CPL      sigl(0x90.7)
   205:         }while(--i);  
C:0x00CE    DFFC     DJNZ     R7,C:00CC
   206: }  
C:0x00D0    22       RET      


看到了吧?哈哈,这回神仙也算不出来了.因为两个函数没有了直接调用的关系,所以编译器认为它们之间不会产生冲突,结果分配了一对互相冲突的寄存器,当任务从func1()切换到func2()时,func1()中的寄存器内容就给破坏掉了.大家可以试着去编译一下下面的程序:

sbit sigl = P1^7;
void func1(){
        register char data i;
        i = 5;
        do{
                sigl = !sigl;
                task_switch();
        }while(--i);
}
void func2(){
        register char data i;
        i = 5;
        do{
                sigl = !sigl;
                task_switch();
        }while(--i);
}

我们这里只是示例,所以仍可以通过手工分配不同的寄存器避免寄存器冲突,但在真实的应用中,由于任务间的切换是非常随机的,我们无法预知某个时刻哪个寄存器不会冲突,所以分配不同寄存器的方法不可取.那么,要怎么办呢?
这样就行了:

sbit sigl = P1^7;
void func1(){
        static char data i;
        while(1){
                i = 5;
                do{
                        sigl = !sigl;
                        task_switch();
                }while(--i);
        }
}
void func2(){
        static char data i;
        while(1){
                i = 5;
                do{
                        sigl = !sigl;
                        task_switch();
                }while(--i);
        }
}

将两个函数中的变量通通改成静态就行了.还可以这么做:

sbit sigl = P1^7;
void func1(){
        register char data i;
        while(1){
                i = 5;
                do{
                        sigl = !sigl;
                }while(--i);
                task_switch();
        }
}
void func2(){
        register char data i;
        while(1){
                i = 5;
                do{
                        sigl = !sigl;
                }while(--i);
                task_switch();
        }
}

即,在变量的作用域内不切换任务,等变量用完了,再切换任务.此时虽然两个任务仍然会互相破坏对方的寄存器内容,但对方已经不关心寄存器里的内容了.

以上所说的,就是"变量覆盖"的问题.现在我们系统地说说关于"变量覆盖".

变量分两种,一种是全局变量,一种是局部变量(在这里,寄存器变量算到局部变量里).
对于全局变量,每个变量都会分配到单独的地址.
而对于局部变量,KEIL会做一个"覆盖优化",即没有直接调用关系的函数的变量共用空间.由于不是同时使用,所以不会冲突,这对内存小的51来说,是好事.
但现在我们进入多任务的世界了,这就意味着两个没有直接调用关系的函数其实是并列执行的,空间不能共用了.怎么办呢?一种笨办法是关掉覆盖优化功能.呵呵,的确很笨.

比较简单易行一个解决办法是,不关闭覆盖优化,但将那些在作用域内需要跨越任务(换句话说就是在变量用完前会调用task_switch()函数的)变量通通改成静态(static)即可.这里要对初学者提一下,"静态"你可以理解为"全局",因为它的地址空间一直保留,但它又不是全局,它只能在定义它的那个花括号对{}里访问.
静态变量有个副作用,就是即使函数退出了,仍会占着内存.所以写任务函数的时候,尽量在变量作用域结束后才切换任务,除非这个变量的作用域很长(时间上长),会影响到其它任务的实时性.只有在这种情况下才考虑在变量作用域内跨越任务,并将变量申明为静态.
事实上,只要编程思路比较清析,很少有变量需要跨越任务的.就是说,静态变量并不多.

说完了"覆盖"我们再说说"重入".
所谓重入,就是一个函数在同一时刻有两个不同的进程复本.对初学者来说可能不好理解,我举个例子吧:
有一个函数在主程序会被调用,在中断里也会被调用,假如正当在主程序里调用时,中断发生了,会发生什么情况?

void func1(){
        static char data i;
        i = 5;
        do{
                sigl = !sigl;
        }while(--i);
}

假定func1()正执行到i=3时,中断发生,一旦中断调用到func1()时,i的值就被破坏了,当中断结束后,i == 0.

以上说的是在传统的单任务系统中,所以重入的机率不是很大.但在多任务系统中,很容易发生重入,看下面的例子:
void func1(){
....
delay();
....
}
void func2(){
....
delay();
....
}
void delay(){
        static unsigned char i;//注意这里是申明为static,不申明static的话会发生覆盖问题.而申明为static会发生重入问题.麻烦啊
        for(i=0;i<10;i++)
                task_switch();
}

两个并行执行的任务都调用了delay(),这就叫重入.问题在于重入后的两个复本都依赖变量i来控制循环,而该变量跨越了任务,这样,两个任务都会修改i值了.
重入只能以防为主,就是说尽量不要让重入发生,比如将代码改成下面的样子:
#define delay() {static unsigned char i; for(i=0;i<10;i++) task_switch();}//i仍定义为static,但实际上已经不是同一个函数了,所以分配的地址不同.
void func1(){
....
delay();
....
}
void func2(){
....
delay();
....
}

用宏来代替函数,就意味着每个调用处都是一个独立的代码复本,那么两个delay实际使用的内存地址也就不同了,重入问题消失.
但这种方法带来的问题是,每调用一次delay(),都会产生一个delay的目标代码,如果delay的代码很多,那就会造成大量的rom空间占用.有其它办法没?

本人所知有限,只有最后一招了:
void delay() reentrant{
        unsigned char i;
        for(i=0;i<10;i++)
                task_switch();
}
加入reentrant申明后,该函数就可以支持重入.但小心使用,申明为重入后,函数效率极低!



最后附带说下中断.因为没太多可说的,就不单独开章了.
中断跟普通的写法没什么区别,只不过在目前所示例的多任务系统里因为有堆栈的压力,所以要使用using来减少对堆栈的使用(顺便提下,也不要调用子函数,同样是为了减轻堆栈压力)
用using,必须用#pragma NOAREGS关闭掉绝对寄存器访问,如果中断里非要调用函数,连同函数也要放在#pragma NOAREGS的作用域内.如例所示:

#pragma SAVE
#pragma NOAREGS  //使用using时必须将绝对寄存器访问关闭
void clock_timer(void) interrupt 1 using 1 //使用using是为了减轻堆栈的压力
}
#pragma RESTORE

改成上面的写法后,中断固定占用4个字节堆栈.就是说,如果你在不用中断时任务栈深定为8的话,现在就要定为8+4 = 12了.
另外说句废话,中断里处理的事一定要少,做个标记就行了,剩下的事交给对应的任务去处理.



现在小结一下:

切换任务时要保证没有寄存器跨越任务,否则产生任务间寄存器覆盖.        使用静态变量解决
切换任务时要保证没有变量跨越任务,否则产生任务间地址空间(变量)覆盖.  使用静态变量解决
两个不同的任务不要调用同时调用同一个函数,否则产生重入覆盖.          使用重入申明解决
点赞  2008-9-26 09:13
前面所说的例子中,除了多任务并行执行能力外,没有其它功能,这对于一个极简单的系统来说是够用的,但如果系统稍复杂一点,例如:

1.某任务中需要延时
2.某任务中需要等待,直至某事务处理完.
3.任务并非一开始就全部装入,随着处理流程的展开,在不同的时刻装入不同的任务.任务具有生命周期,事务处理完毕后,希望将任务结束并清除.

这里就是操作系统的几个典型功能:
1.休眠机制
2.消息机制
3.进程机制

事实上这些功能非常容易实现,如果对前面几篇的内容全部了解的话,很容易想象这些机制是如何实现的.
这一回我们就来讲讲这些机制是怎样实现的.

1.休眠及延时(延时又叫睡眠,这里刻意改称"延时",以防止与休眠混淆)机制:

为每个任务定义一字节计数器:
unsigned char idata task_sleep[MAX_TASKS];//任务睡眠定时器

该计数器会在每次定时器中断时减1(除非它的值为0,或为0xff)
void clock_timer(void) interrupt 1 using 1
{

...
        //任务延迟处理
        i = MAX_TASKS;
        p = task_sleep;  
        do{
                if(*p != 0 && *p != -1)//不为0,也不为0xff,则将任务延时值减1.为0xff表示任务已挂起,不由定时器唤醒
                        (*p)--;
                p++;
        }while(--i);
}

在任务切换时,检查task_sleep的值是否为0.不为零则跳过该任务不执行,检查下一个任务是否符合执行条件.
void task_switch(){
...
        while(1){
...
                task_id++;//task_id切到下一个.实际上不只是增1这么简单,还要取模.这里只是示范,所以就不写全了.

                if( task_sleep[task_id] == 0)//不为0表示该任务在休眠/延时中,所以跳过.
                        break;
        }  

...
}
相关宏:
task_sleep(timer) 延时timer个定时器中断周期.取值0~254
task_suspend() 休眠.如果无其它进程唤醒,则永远不会再执行
task_wakeup(tid) 唤醒任务号为tid的进程


2.任务动态载入与结束:

在task_switch()里,当发现该进程的task_sp值为0则不再保存该任务的栈指针,这个任务也就消失了.
在搜索下一个可执行任务时,检测task_sp值是否非0.为零则表示该位置无任务.
void task_switch(){

        if(task_sp[task_id] != 0)//如果该任务没被删除,则保存当前栈指针.
                task_sp[task_id] = SP;

        while(1){
                task_id++;//task_id切到下一个.实际上不只是增1这么简单,还要取模.这里只是示范,所以就不写全了.

                if( task_sp[task_id] != 0)//实际上这里还要检查task_sleep的值.但那跟现在所说无关,所以暂时去除掉那部分代码
                        break;
        }  
...
}

调用task_switch()前清除自已的task_sp值.
#define task_exit() task_sp[task_id] = 0, task_switch()
附带说下,调用task_delete(tid) 可删除tid指定的进程.


3.消息机制:
消息机制是借助sleep/suspend来实现的,不能算真正的消息机制.但在很多场合下已经足够了,对51这样的芯片来说,资源占用率和执行效率更重要.

定义一个消息向量表,每个表示一个消息,每个项能保存一个task_id
event_vector[MAX_EVENT_VECTOR]
#define EVENT0 0
#define EVENT1 1
#define EVENT2 2
....
#define EVENTn MAX_EVENT_VECTOR - 1

当进程要监听该消息时,将自已的task_id号装入对应的向量中即可.例如要监听EVENT_RF_PULS_SENT,只需:

event_vector[EVENT_RF_PULS_SENT] = task_id;

这个过程称为"消息注册",已写为一个宏 event_replace(eid)

所以上例只需写成
event_replace(EVENT_RF_PULS_SENT);
...
event_clear(EVENT_RF_PULS_SENT);//使用完后消除该消息

如果不确定该消息目前是否有其它过程已在监听,可使用event_reg(eid, reg),将原先的向量保存在参数reg指定的变量中,并在用完消息后用event_restor(eid, reg)还原回来.

static unsigned char old_event_vector;
event_reg(EVENT_RF_PULS_SENT, old_event_vector);
....
event_unreg(EVENT_RF_PULS_SENT, old_event_vector);//使用完后还原该消息

如果监听了消息,在退出任务前必须解除监听,否则会引发错误地唤醒.
当进程处于运行态时是无法收到消息的,因此要等待消息必须进入休眠/延时状态.完整过程:

注册消息
...
进入休眠
...

要唤醒一个等待消息的进程,调用event_push(eid)即可.
如果eid指定的消息无进程监听,则消息被丢弃.
另外要注意的是,由于消息机制是借用休眠机制来完成的,所以如果监听消息的进程未处于休眠/延时中时,进程是无法收到消息的,该消息会被直接丢弃.在这种情况下,应使用task_wait_interrupt()来完成.
这种情况发生于进程监听的消息产生于中断服务程序中.其机制如下:

假定任务A与中断服务A_ISV
A中完成对缓冲区的填写,填完后进入休眠,等待消息MESSAGE_A
A_ISV负责在定时中断发生时将缓冲区中的字节写到P1口,写完后发送MESSAGE_A

通常情况下,这个过程并无问题,但当以下情况发生时,任务A将永远处于等待中:
A填写完缓冲区后,进入休眠前,定时器中断发生了
此时中断服务程序按步就班地将缓冲区处理完,并发送MESSAGE_A消息.如前所说,发送消息的实质是将task_sleep的值置为0
中断服务返回后,也按步就班将task_sleep置值,此刻它一点也不知道,也无从知道中断已经发生过了,于是信息实质上丢失.于是该任务再也不会醒来.

解决的方法是,在写缓冲区前先将任务的task_sleep置值,然后才写缓冲区,然后才进入休眠状态.这样,中断发生时task_sleep必已完成赋值,因而消息不会丢失.
该过程已写为一个宏task_wait_interrupt(缓冲区操作的语句)
写法有点别扭,但工作得很好.如果不习惯这样的风格,可以直接展开该宏书写代码:
task_setsuspend(task_id);
操作缓冲区的语句
task_switch();










示例代码:

1.调用子任务,并等待子任务完成后发送消息.类似于调用函数.与调用函数相比好处在于,可以启动多个子任务同时执行,而调用函数只能一个一个执行.
void task2(){
        static unsigned char i;

        i = sizeof(stra);
         
        do{
                stra[i-1] = strb[i-1];
                task_switch();
        }while(--i);
         
        event_push(EVENT_RF_PULS_SENT);//发送消息(其实质是唤醒监听该消息的进程)

        task_exit();//结束任务.
}

void task3(){
        static unsigned char event_backup;//用于保存信号EVENT_RF_PULS_SENT原来的值.在这个例子里实际上是不需要保存的,因为EVENT_RF_PULS_SENT未被其它进程监听.但在真实应用中则不一定能预知.

        event_reg(EVENT_RF_PULS_SENT, event_backup);//注册消息,原值保存在event_backup中(该变量必须申明为静态)

        //如果等待的消息产生于另一任务进程中,则使用task_suspend()就可以了.
        strb[0] = 3, strb[1] = 2, strb[2] = 1;//填写缓冲区
        task_load(task2);//装载子任务
        task_suspend();

        event_unreg(EVENT_RF_PULS_SENT, event_backup);//退出前必须还原消息中原来的值

        task_exit();//结束任务.
}



2.等待中断处理并发送消息:
void clock_timer(void) interrupt 1 using 1
{
        if(strb[0] != 0 && strb[1] != 0 && strb[2] != 0){
                P0 =  strb[0];
                P1 =  strb[1];
                P2 =  strb[2];
                push_event(EVENT_RF_PULS_SENT);
        }
}

void task3(){
        static unsigned char event_backup;//用于保存信号EVENT_RF_PULS_SENT原来的值.在这个例子里实际上是不需要保存的,因为EVENT_RF_PULS_SENT未被其它进程监听.但在真实应用中则不一定能预知.

        event_reg(EVENT_RF_PULS_SENT, event_backup);//注册消息,原值保存在event_backup中(该变量必须申明为静态)

        //如果等待的消息产生于另一任务进程中,则使用task_suspend()就可以了.

        task_wait_interrupt(
                        strb[0] = 3, strb[1] = 2, strb[2] = 1;
                )//填写缓冲区
        //如果写成以下形式:
        //strb[0] = 3, strb[0] = 2, strb[0] = 1;
        //task_suspend();
        //如果在执行完第一行语句后正好发生中断,则从中断返回后,任务调用task_suspend()后将永远不会醒.

        event_unreg(EVENT_RF_PULS_SENT, event_backup);//退出前必须还原消息中原来的值

        task_exit();//结束任务.
}
点赞  2008-9-26 09:39
写的非常好啊                        
点赞  2008-11-15 17:50

非常好

非常好非常好非常好非常好
点赞  2008-12-22 13:39

Re: [分享] 转来的一个ucos在51单片机上面跑的例子

太感谢了!!!!
别看在学校里一个个人五人六,书到用时方很少他心里有数!!!
点赞  2008-12-22 22:47

Re: [分享] 转来的一个ucos在51单片机上面跑的例子

谢谢!写得非常之好!!!
点赞  2008-12-26 23:37

Re: [分享] 转来的一个ucos在51单片机上面跑的例子

:D :D :D
点赞  2009-3-5 20:02
很好!谢谢版主
点赞  2009-3-16 00:34

Re: [分享] 转来的一个ucos在51单片机上面跑的例子

非常受用,谢谢啦
点赞  2009-4-8 21:58
太好了,谢谢楼主
点赞  2009-5-2 10:24
点赞  2009-5-12 16:41
thanks for your sharing
点赞  2009-8-21 21:11
好!!!顶起!!
点赞  2009-8-24 00:39
写得很好...可是水平有限...看不懂呀...友情帮顶...
点赞  2009-9-7 14:06
写的太好了!!鼓掌
点赞  2009-10-2 12:51
写得很好~~~~可以慢慢琢磨~~~~~~~~~~~
点赞  2009-10-27 23:55
1234下一页
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 京公网安备 11010802033920号
    写回复