模拟和数字示波器功能区别
示波器是观察波形的窗口,它让设计人员或维修人员详细看见电子波形,达到眼见为实的效果。因为人眼是最灵敏的视觉器官,可以明察秋毫之末,极为迅速地反映物体至大脑,作出比较和判断。因此,示波器亦誉为波形多用表。
早期示波器只显示电压随时间的变化,作定性的观察。随后,改进的示波器具备定量的功能,测量幅度和时间,以及它们的变化情况。同时,为了记录和比较偶发事件,要借助照相机和示波管的长余辉效应。
模拟示波器的频率特性由垂直放大器和阴极示波管来决定。八十年代示波器引入数字处理和微处理器,出现数字示波器,现在把模拟示波器称为模拟实时示波器(ART示波器),数字示波器称为数字存储示波器(DSO示波器)。
ART示波器需要与带宽相适应的放大器和阴极射线示波管,随着频率的提高,对阴极射线示波管的工艺要求严格,成本增加,存并瓶颈。DSO示波器只要与带宽相适应的高速A/D转换器,其它存储器和D/A转换器以及显示器都是较低速成的部件,显示器可用LCD平面阵列和彩色屏幕。
DSO示波器采用微处理器作控制和数据处理,使DSO示波器具有超前触发、组合触发、毛刺捕捉、波形处理、硬拷贝输出、软盘记录、长时间波形存储等ART所不具备的功能,目前DSO示波器的带宽也超过1GHz,在许多方面都超过ART的性能。
DSO示波器也有不足之处,带宽取决于取样率,比较通用的取样率等于带宽的4倍。复现的波形靠内插算法补齐,波形会有失真;A/D转换速度快,但D/A转换速度慢,故波形更新率低,偶发信号会被遗漏;垂直分辨率一般用8位,显然较低;面板旋钮多,菜单复杂,使用不方便;没有亮度调制,观察不到三维图形;波形存储容量不够,无法对波形进行处理等等。
目前DSO示波器的不足之处已基本被克服,但是并非全部良好性能都体现在同一部示波器内,亦即每部DSO示波器都会有一定特点,也有某些不足,在选择示波器型号时应该留意对比。有些型号的DSO示波器具有与ART示波器一样的波形更新率,有些型号的DSO示波器却没有,有一种DSO示波器具有ART示波器的荧光屏三维图形显示能力,而大部分DSO不具备这种性能。大部分DSO示波器实时带宽与单次带宽相同,但也有只保证实时带宽的DSO示波器。
前述DSO示波器都包含A/D转换器和微处理器。这样一来,在PC机增加插卡亦可构成DSO,但一般取样率较低,功能较少,价格也便宜。还有采用VXI总线的DSO模块,以及机架式的DSO插件。
DSO示波器的存储器是示波器部件中仅次于A/D转换器的元件,它保存被测信号的样品,供后续的D/A转换器把波形复原,现在存储容量可达到1M以上。
普通DSO示波器有8位垂直分辨率,即每次扫描有256个样品,需要256点的存储,相当256字节。如果提高分辨率,将水平轴扩大10倍,则相当20K 字节;垂直轴亦扩大10倍,相当40K字节。由此可见,DSO示波器最少应有2K字节,中等的DSO示波器应有40K 字节以上。如果要记录10倍上述的波形,则起码要400K 字节以上。因此,存储容量大小很重要。
反过来,存储容量也影响到扫描速度,例如每扫迹只有50K点的存储器,记录100μs数据,则取样间距是2ns,此时取样率相当500MS/s,以取样率等于4倍带宽计算,实时带宽等于125MHz。显然,如果需要提高取样率至1000MS/s,则记录100μs的数据,需要100K点的存储器.
为了存储一幅完整的图形,设图素是1024×512=0.5M位,四幅图形,要有2M位存储量.在FFT分析中也需要额外的存储量,将新的波形的分量与参考的波形或存储的波形作对比.为便于波形存储,有些DSO还提供软盘或硬盘作数据记录之用.
[ 本帖最后由 天天向上 于 2009-9-11 14:54 编辑 ]
示波器-常规测量需要必备的工具
几年之前的某些"尖端"测量手段如今已成为常规方法。几乎每个工程师都可以讲述一些这样的经历:他们如何追踪由于信号的几个纳秒的延迟或几乎无法察觉的瞬态而引发的问题。在测量现在的电路时,必须要处理更快的信号边缘、更高的时钟频率,还要处理模拟量,在数字系统中更是如此。同一台示波器,早晨用于描述时序,中午可能被用于排除模拟电路的故障,到了下午则用来测量电源。所有这些都是常规测量,但是需求的变化范围却很大。
让我们考察一些"常规"的测量,看它们对示波器有什么要求:
基础测量:"信号是否存在",波形,振幅和频率(或周期),噪音。
尽管现在的频率范围比过去高,多数示波器完全能够胜任这些测量。60MHz到100MHz的带宽就能显示出很理想的信号边缘和瞬态细节。
对于基础测量来说,示波器最可贵的优点是容易使用。如今的数字存储示波器使用了自动化的测量方法和游标,与网格线判读的方法相比,其读数更快捷、更精确。
数字测量:边沿定时关系、瞬态、"单次"事件。
示波器的带宽和采样率对于数字测量是非常重要的。如果示波器"太慢",则快速的边缘跳变和过冲有可能被软化甚至丢失。为了可靠地捕获到不可重复的事件,示波器的采样率(频率)必须比被测信号的频率高5-10倍。
数字电路测量:建立时间和保持时间,数据采集,总线故障。
数字电路测量有着与数字测量相类似的需求,不过游标和自动测量使得重复性的测试更加容易。为了对器件性能作出文档说明,常常需要波形存储功能。
电源测量:交流电压、电流、谐波。
对于示波器来说,电压测量和其他的动态测量并没有很大的不同,只是电压和电流值太高可能发生危险,而且信号可能没有真正的接地。为此,需要采用专门的探头技术。
在测量电源的谐波(为了使电源符合稳压电源的质量标准,应测量此参数)时,需要FFT(快速富利叶变换)工具提供信号的频域图。 很显然,为当今的测量任务选择一台通用的示波器是至关重要的。值得庆幸的是,现代的数字存储示波器(DSO)能够很好地胜任上述大多数测量任务。但是各种型号的DSO在特性、性能和价格上有很大差异。泰克公司的TDS2012 DSO是那个价位的示波器中最为通用的一种,其带宽为100兆赫兹(采样率为1 GS/s),可自动测量,非常轻便(重量仅有1.5公斤),有波形存储功能,有多种探头选择和通信方式选择。此外,该系列产品还以最为经济的价位提供60MHz和100MHz、200MHz的一系列数字示波器。
◆ 数字电路测量
调试样机是每个数字设计项目的组成部分。有时,如果电路的运行不稳定,或者根本不工作,就必须确定主时钟信号在整个系统中的传送是否正确,在到达目的地时是否完好无损。通常有很多测试点和器件的引线需要检查。在直观地检查信号的完整性时,常用的一个办法就是测量它的频率或振幅,或者两者都测。
如果没有自动测量手段,这个过程会因过于费时而失去了实际意义。TDS 2012这样的自动化数字存储示波器是数字电路测量的最佳工具。
TDS2012 的可以选择波形的"聪明"自动设置(AUTOSET)功能,可以立即给出很合用的波形。AUTOSET能自动设置触发方式、获取方式、垂直标度因子,以及捕获目标波形并将其清晰地显示出来所需要的其他参数。通过屏幕上的波形可以很容易地检查信号的畸变或失真。
下一步是用另一个内置的省时功能来测量频率和振幅。利用MEASURE按钮可以同时进行四种不同的自动测量并显示结果。当从一个测试点移动到另一个测试点时,TDS 2012能够保留这个设置,并随着测量工作的进行重新估价出新的测量方式。图1给出了测量结果。图中显示了时钟信号,以及频率、周期和振幅峰值的定量读数。
如果在设计中把敏感的模拟电路和快速的数字元件组合在一起,那么数字的开关瞬态就有可能进入模拟电路。例如在录像机中,这些瞬态可以叠加到视频信号上并引起令人厌烦的画面失真。模拟电路本身固有的噪音常常掩盖了开关瞬态。那么瞬态是从哪儿产生的呢?
TDS 2012 示波器的平均(AVERAGE)方式能够帮助你透过噪音看到令人棘手的瞬态并查明其原因。AVERAGE是获取菜单中的一个选项。示波器最多可选择128个获取项,并生成一个平均的波形,只选择能够产生最佳结果的获取数就可以了。图2 给出了一条模拟信号线的平均视图。原来被无关的噪音掩蔽起来的数字瞬态,现在很清晰地从底线突现出来。从瞬态的频率和时间特征可以找到有关其来源的线索。在本案例中,两块电路板导轨相距太近,以致于将数字信号的快速前沿耦合到了模拟波形轨迹上。
TDS 2012 的另一种获取方式为峰值检测(PEAK DETECT),可以捕获快而窄的过冲。这种故障使模拟示波器和其他数字存储示波器的等时获取功能无法发挥作用。PEAK DETECT还提供了确保故障不会漏检的另一种工具。
每个周期中的负向尖峰脉冲可能是转换中的一个固定位造成的。请注意,TDS 2012的PEAK DETECT功能结合了它的高带宽和10倍过采样能力,使得瞬态在第一位置上暴露无遗。当前,这一功能在贴近检查尖峰脉冲时是很有用的。
为此,要用水平位置调节将触发指示器(屏幕顶部的箭头)定位于屏幕的中心。 在这一点上,主时基的位置(M Pos)应当为 0。然后,调整触发电平使波形的过冲部分位于屏幕的中心。最后一步是用水平SEC/DIV调节将过冲展开。
◆ 集成电路参数测量
随着时钟频率的逐年增加,逻辑器件的技术规范,建立时间和保持时间,变得更加重要。虽然制造商的数据表里提供了建立时间和保持时间参数,在电路中配置新的器件之前通常还是要对这些参数加以确认。TDS 2012 的时间游标简化了建立时间和保持时间的测量。
建立时间是指有效数据到达和将数据采集到器件中去的时钟边缘之间的时间量。换言之,就是数据在被采集之前必须存在多长时间。图5 描述的是数据和时钟信号;本例中是时钟的下降沿起作用。为了测量建立时间,只需按TDS 2012的CURSOR按钮并选择时间游标;然后,用垂直位置旋钮将其定位。在本例中游标1 是设定在数据信号(下面的轨迹)振幅的50%处,而游标2 是位于时钟下降沿的顶部。在波形右面"Delta"栏中的读数即为测得的建立时间,本例中为10毫微秒。
在测量保持时间时要经历同样的过程。保持时间就是在时钟信号的锁存沿采集了数据之后该数据还必须保持有效的那段时间。
在描述IC器件的特性时经常要检测信号的上升时间。TDS 2012 能够自动测量上升时间和下降时间而无须使用游标。
在描述器件特性时经常需要将结果记录在文档中。如果在TDS 2012 上配备了接口模块,即可通过接在并行端口的兼容打印机将波形打印出来,通过泰克的OpenChoice 软件,示波器也可将信息发送到外接的PC计算机上或进行更多的参数测量。此外,这种示波器还能存储两个完整的波形数据以供在任何时候重新调用和显示。
◆ 电源测量
电源测量有其特殊的要求。当然,电压值和电流值通常是比较高的。但最重要的是,电源的测试点有可能是"浮动"的,即没有参考接地。由于多数示波器都需要以地为基准的信号,所以必须使用能够将示波器的地与电路的地隔离开的探头。泰克公司的P5200差分探头就是这样的工具。这种探头可以自供电,与TDS1000/2000完全兼容,而且最大测量范围达1300伏,适用于电机驱动、供电和其他的浮动量的测量。
开关电源的稳压电路通常要使用功率MOSFET(MOS场效应管)。为了测量MOSFET上的Vds(漏极到源极的电压)值(参见图7),将P5200探头连接到示波器输入端,将其衰减开关设定为50X或500X(视待测电路的电平而定)。通过所用通道的VERTICAL MENU按钮选择与待测电平相匹配的垂直标度。这样可以确保屏幕读数的大小适当。P5200是差分探头,有两根导线跨接在测试点上。P5200的输出是低电平的单端信号,可以像其他TDS 2012波形一样用AUTOSET、自动测量或游标等方式获取。
电流测量相当简单。泰克公司的A621自供电电流探头直接连接到TDS2012上,并以同样的方法设置测量过程。电流探头是非接入式的,传感器"环绕"着导体,通过感应耦合来获取信号。图7所示的电流测量是将A621的传感器端头置于来自整流器和滤波器的导线周围。
开关电源容易生成能够返回到功率栅极的奇次谐波。为了能符合保证供电质量的稳压标准(如IEC 555),测量谐波内容的需求日益增多。TDS 2012还可进行谐波测量,自动地将常规的时域波形(如上述电压波形或电流波形)转换为它的频率成分(谐波)。
◆ 结论
用示波器完成的很多测量都是"常规"的,但这并不意味着测量本身是简单的。它们要求测量仪器不但能给出精确的结果,还要能够简化测量作业(诸如时间和振幅测量、过冲检测、浮动电压测量等)。
[ 本帖最后由 天天向上 于 2009-9-11 15:03 编辑 ]
选择数字示波器要注意哪些方面?
八十年代数字电路发展很快,而其测试工具——数字示波器也象雨后春笋。由于数字示波器价格比模拟示波器贵得多,所以我们在选择数字示波器时一定要按需要而定,不能盲目的追求高指标,否则会带来很朋的浪费。 一台低档次、高档次的数字示波器价格相差近50倍(8000元-50多万元)。
例如:美国吉事利的LC584AXL 4ch 1GHz 8Gs/s 16M USD 47050.00 2ch 20Mhz 20M/s 1K USD 800.00 怎样选择才算合理呢?
1、带宽
如需要精确测量带宽选择和最高被测信号频率的关系,我们先来看下面的一个例子:例如有一个50MHz的脉冲信号: 从上面不同带宽的示波器测量的图形来看,为了保证测试信号幅度和上升延的精度,选择示波器的带宽应为被测信号频率的3-5倍,精确测量要8-10倍或以上。
2、采样本
正弦波:大于5个采样点/周期(一般要求),采样点越多越接近其实波形。 脉冲波:上升沿要大于5个采样点: 精确测量上升沿要大于10个采样点。
3、储存长度:储存长度=采样本*扫描速度*10,也可以说是波形观测时间,公式 。
4、触发功能:要确保能捕获和同步被测信号。以利于观察和分析被测波形。 触发方式有三种:自动触发、常态触发、单次触发。 触发功能分两大类:
1)边缘(Edge)触发:所有的数字示波器都有,它是指正沿、负沿触发、视窗触发、前触发和后触发。
2)聪敏(Smart)触发:在高档示波器中考虑得非常完善。目前示波器上有:延迟触发、顺序触发、毛刺触发、间隔触发、漏失逻辑面触发、TV触发、 本触发……
5、分析功能: 应具有很强的自动处理、运算、测试和分析被测信号的能力。
1)形和参数合格/失败自动判试功能;
2)高级函数处理:平均、微分、极分、指数、对数、乘方、开方、包络、高分制等运算功能;
3)FFT频谱运算功能从10K-4M点,具有功率谱、功本密度、相位矢量、虚部、实部等测量;
4)直方 分析可按各种参数作直方 测试信号的稳定性运算从500点-8M点;
5)波形参数趋势(Trend)分析功能,抖动(Jitter)和时间分析;
6)可开2-8个窗口,同时观察原波形和处理后波形;
7)提供X-Y显示,及X-Y+X-T及Y-T显示功能,并可进行游标测量。特别适合对数字通讯信号做矢量 (Vector diagram)分析。
6、储存和打印信号:
1)可在测试线某存储在软盘和硬盘上,并可在PC机上读出。有的数字示波器配有内置式打印机,方便打印分析长时间信号;
2)有的还提供VGA接口。
选择示波器要考虑的十大因素
1、您需要多少带宽
我们已经处于数字示波器时代,与仅考虑模拟放大器的带宽相比,应更多的考虑示波器的带宽,为了保证示波器为应用提供足够的带宽,您必需考虑示波器将要考察的信号带宽。
带宽是示波器最重要的特点,因为它决定这显示的信号范围,它在很大程度上还决定着用户需要支付的价格。在制定带宽决策时,您必需把当前有限的预算与实验室中示波器使用期间预计的需求平衡起来。
在当前的数字技术中,系统时钟通常是示波器可能显示的频率最高的信号。示波器的带宽至少应该比这一频率高三倍,以合理地显示这个信号的形状。
系统中决定示波器带宽要求的另一个信号特点是信号的上升时间。由于您可能看到的不只是纯正弦波,因此在超出信号基础频率的频率上,信号将包含谐波。例如,如果您考察的是方形波,那么信号包含的频率至少要比信号的基础频率高10倍。如果在考察方形波等信号时不能保证相应的示波器带宽,您将在示波器显示屏上看到圆形的边沿,而不是预计看到的清晰快速的边沿。这进而会影响测量精度。
幸运的是,我们有一些非常简单的公式,可以帮助您根据信号特点确定相应的示波器带宽。
1、信号带宽=0.5/信号上升时间
2、示波器带宽=2 x 信号带宽
3、示波器实时取样速率=4 x 示波器带宽
在已经确定了相应的示波器带宽后,您需要考虑示波器打算同时使用的每条信道的取样速率。如上面的公式3所列,对打算使用的每条信道,必需保证取样速率是示波器带宽的四倍,以便这些信道能够全面支持示波器的额定带宽。我们将在后面对此进行更详细的讨论。
[
本帖最后由 天天向上 于 2009-9-11 14:56 编辑 ]
2、您需要多少条信道
乍一看,信道数量似乎是一个简单的问题。毕竟,不是所有示波器都配有两条信道或四条信道吗?没别的了!数字内容遍布当前设计中的任何地方,不管数字内容在设计中的比重高低,传统的2通道或4信道示波器都并不能一直提供触发和察看所有感兴趣的信号所需的信道数量。如果您遇到这种情况,您就会了解构建外部硬件或编写专用软件隔离感兴趣的活动时涉及的问题。
对当前日益发展的数字领域,一种全新的示波器已经增强了示波器在数字应用和嵌入式调试应用中的应用。混合信号示波器(通常称为MSO)除典型示波器的2条或4条示波器信道外,还紧密地插入另外16条逻辑定时信道。其结果,实现了一个全功能示波器,提供了最多20条时间相关的触发、采集和察看信道。
我们将以常见的SDRAM应用为例,介绍怎样使用混合信号示波器进行日常调试。为隔离SDRAM写入周期,您必需对五种不通的信号组合触发系统-RAS,CAS,WE,CS和时钟。4信道示波器本身不足以满足这一基本测量要求。
如图2所示,16条逻辑定时信道用来设置在RAS高、CAS低、WE高和CS上触发系统。示波器信道1用来察看和抽换法时钟的上升沿。在逻辑分析仪和示波器组合解决方案中,逻辑分析仪只能交叉触发示波器或反之,与此不同,混合信号示波器可以在示波器和逻辑定时信道中进行全宽触发。
[
本帖最后由 天天向上 于 2009-9-11 15:01 编辑 ]
3、您要求的取样速率是多少
如前所述,在评估示波器时,取样速率是一个非常重要的考虑指标。为什么呢?大多数示波器采用插入形式,在两条或多条信道偶合模数转换器时,其仅在四信道示波器中的一条或两条信道上提供最大的取样速率,从而可以提高取样速率。许多制造商在示波器的主要技术指标中仅强调这种最大化的取样速度,而不会告诉用户该取样速率仅适用于一条信道!如果你希望购买一个4信道示波器,那么事实上你希望不仅仅在一条信道上使用和获得全部带宽。
回忆一下第2个考虑因素中给出的公式,示波器的取样速率至少应该是示波器带宽的4倍。在示波器使用某种数字重建形式时,最好使用4倍乘数,如sin(X)/X插补。在示波器没有采用数字重建形式时,乘数实际上应该是10倍。由于大多数示波器采用某种数字重建形式,4倍乘数应该足够了。
让我们考察一下使用500MHZ示波器的实例,该示波器采用sin(X)/X插补技术。对这一示波器,为在,每条信道上支持整整500MHz的带宽,每条信道需要的最低取样速率是4 x (500MHz),或每条信道2GSa/s。当前市场上部分500MHz示波器声称最大5GSa/s取样速率,但没有指出5GSa/s取样速率只适用于一条信道。在使用三条或四条信道时,这些示波器每条信道的取样速率实际上只有1.25GSa/s,不足以在几条信道上支持500MHz的带宽。
考虑取样速率的令一种方式是确定应用点之间希望的分辨率。取样速率是分辨率的倒数。例如,假设您希望在样点之间实现1ns的分辨率。能够提高这一分辨率的取样速率是1/(1ns)=1GSa/s。
总之,要保证考虑的示波器能够为希望同时使用的所有信道提供足够的每条信道取样速率,从而每条信道都能够支持示波器的额定带宽。
[ 本帖最后由 天天向上 于 2009-9-11 15:02 编辑 ]
4、您需要多少内存深度
如前所述,带宽和取样速率紧密相关。内存深度也与取样速率紧密相关。模数转换器对输入波形进行数字转换,得到的数据存储到示波器的告诉内存中。选择示波器时一个重要因素是了解示波器怎样使用存储的这些信息。内存技术使得用户能够捕获采集数据、当大察看更多细节、或在采集的数据上进行数学运算、测量和后期处理功能等操作。
许多人认为,示波器的最大取样速率指标适用于所有时基设置。这当然是好事,但这可能要求非常大的内存,几乎没有人能够买得起内存这样大的示波器。由于内存深度有限,因此随着人们把时基设置成越来越宽的范围,所有示波器必须降低取样速率。示波器的内存越深,以全部取样速率可以捕获的时间越多。目前市场上有一种流行的示波器,其取样速率达到每秒几千兆样点及拥有10,000样点的内存。在时基设为2ms/格及更慢时,这一示波器被迫把取样速率降低到每秒几千样点。你必需查看有问题的示波器,了解时基设置对其取样速率的影响。这里提到的示波器在以要求的扫描速率工作、以显示整个系统操作周期时,将只提供几千赫兹的带宽。
你所需要的内存深度取决于希望查看显示器的数量以及希望保持的取样速率。如果你希望在不同样点间以较高分辨率查看更长的时期,您使用需要深内存。简单的公式可以告诉您需要多少内存、其中需要考虑时间间隔和取样速率:
内存深度=取样速率 x 显示时间
如果您需要放大及更仔细地查看波形,在示波器上所有时间设置中保证高取样速率可以防止假信号,提供与波形有关的更详细的信息。
一旦已经确定内存深度,同样重要的是必需考察在使用最深的内存设置时示波器的操作方式。采用传统深内存结构的示波器响应速度慢,这会给生产效率带来负面影响。由于响应速度慢,示波器制造商通常把深内存降到专用模式,工程师通常只在必需使用深内存时才使用它。尽管示波器制造商几年来已经在深内存结构中取得很大进展,但某些深内存结构的速度仍然很低,操作起来要耗费大量的时间。在购买示波器前,一定要评估示波器在最深的内存设置下的响应能力。
[
本帖最后由 天天向上 于 2009-9-11 15:04 编辑 ]
5、您需要哪些显示功能
所有示波器供应商都知道,他们销售的是波形图像.追溯到模拟示波器时代,示波器CRT显示器的设计特点决定着图像的质量.在当前的数字世界中,示波器的现实性能在很大程度上取决于数字处理算法,而不是显示设备的物理特点.某些示波器制造商已经在产品中增加了专用显示模式,以克服传统模拟示波器显示和数字显示之间的某些差异.没有一种很好的途径,通过研究示波器的技术指标来确定哪种示波器最适合用户的实验室环境.只有在用户工作台上实时演示及使用用户自己的波形时,才能确定哪种示波器最适合满足用户需求.
当前的数字示波器分为两大类:波形查看仪器和波形分析仪.为查看波形设计的示波器通常用于测试和问题诊断应用,在这些应用中,波形图像将提供用户所需的全部信息.
在波形分析应用中,Microsoft Windows操作系统和高级分析功能等特点可以应用额外的抽象等级,确定被测系统的性能状况.在这方面,也很难单纯根据产品技术资料,确定示波器能够躲好地满足用户需求.必需在实验室中进行实时演示,才能确定考察的示波器能否显示用户需要查看的内容.
6、您需要哪些触发功能
许多通用示波器使用边沿触发功能.但是,在某些应用中可能需要使用其他触发功能.高级触发功能使您能够隔离希望查看的事件.例如,在数字应用中,触发信道中某个码型会有很大帮助.如前所述,混合信号示波器可以触发逻辑信道和示波器信道码型,而在示波器/逻辑分析仪组合解决方案中,用户只能通过把各自输入/输出触发信号电缆连接在一起,来交叉触发两台仪器.
对串行设计人员,某些示波器甚至为SPI、CAN、USB、I2C和LIN等标准配备了串行触发协议。高级触发选项在此能够在日常调试任务中节约大量的时间。如果您需要捕获罕见的事件,情况会怎样呢?毛刺触发允许触发正向毛刺或负向毛刺。或触发大于或小于指定宽度的脉冲。在诊断问题时,这些功能特别有用。您可以触发问题,向回查看时间(使用延迟或水平位置旋钮),查看时间(使用延迟或水平位置旋钮),查看导致问题的根源。
当前市场上的许多示波器还为电视和视频应用提供了触发功能。通过使用示波器的电视触发功能,可以在需要查看的场合具体行上触发系统。
[ 本帖最后由 天天向上 于 2009-9-11 15:05 编辑 ]
7、探测信号的最佳方式是什么?
信号的变化速率开始超过1GHz。由于无源探头一般仅限于600MHz,因此获得示波器的全部带宽可能是一个问题。系统带宽(亦即示波器/探头组合带宽)以这两种带宽中的低者为准。例如,考虑一下带有500MHz无源探头的1GHz示波器,组合的系统带宽是500MHz。如果您由于探头而获得500MHz的带宽,购买1GHz示波器是不值得的!
此外,每次在您把探头连接到电路上时,探头变成被测电路的一部分。探针在本质上是一条短传输线。传输线是一种L-C谐振电路,其频率是传输线的1/4波频率,L-C谐振电路的阻抗将变低,其接近于零,并将给被测设备带来负荷。可以简便的在信号的低速上升时间和减幅振荡中查看L-C谐振电路的负荷。
有源探头不仅提供的带宽超过无源探头,而且他们还消除了把探头连接到被刺设备(DUT)时的部分传输线效应。通过在有源探头中采用电阻“衰减的”探针和配件,安捷伦科技最大限度的降低了信号负荷及导致的信号失真。这些衰减的配件可以防止L-C谐振电路的阻抗变得太低,从而防止加载信号导致的减幅振荡和信号失真。
此外,衰减的配件使得探头的频响能够在整个探头带宽范围内保持平坦。通过平坦的频响,可以在探头的整个带宽内防止信号失真。
现在已经解决了信号失真问题,如果你探测的是高速信号,那么下一步是保证即使在使用探头配件时仍能实现全部带宽。Agilent InfiniiMax探头通过在探头放大器和探针之间使用受控的传输线,优化了探头带宽。通过使用一个放大器,您可以连接各种差分探头或单端探头,包括浏览探头、带插座的探头、焊接探头和SMA探头,并获得全部系统带宽。另外,由于探头放大器实际上通过受控传输线与探针分开,因此可以简便地接触紧密的探头空间。
这里的关键是在使用各种探头和配件时了解探头的额定带宽。配件可能会降低探头的性能,用户当然不希望没有必要地花上几千美元,购买一款高带宽有源探头,而这款探头在用户首选的探测配置时会严重降低系统性能。
[
本帖最后由 天天向上 于 2009-9-11 15:08 编辑 ]
8、您需要哪些存档和连接功能?
许多数字示波器现在带有和个人电脑相同的接口,包括GPIB、
RS-232、LAN和USB接口。现在把图片发送到打印机,或把数据传送到PC或服务器要比过去容易得多。您是否经常把示波器数据传送到PC上?那么非常重要的一点是,示波器至少要有上面列出的一种接口选项。内置软驱或光驱还可以帮助您传送数据,但与通过USB或局域网连接从示波器发送文件相比,使用软驱或光驱通常要求更多的工作。对没有局域网和USB等比较先进的接口选项的经济型示波器,示波器制造商通常提供软件,允许通过GPIB或RS-232简便地把波形图像和数据传送的PC上。如果PC没有安装GPIB卡,或用户希望以更简便的方式把波形传送到笔记本电脑上,您可能会考虑GPIB到USB转换器。许多示波器还配有几GB的硬驱,用户还可以使用他存储数据。应提前确定需要示波器提供什么程度的连接能力和存档功能。如果需要作为自动化测试系统的一部分连接示波器,一定要保证示波器配有足够的软件和驱动程度,来适应您的编程环境。
[ 本帖最后由 天天向上 于 2009-9-11 15:06 编辑 ]
9、您怎样分析波形?
自动测量和内置分析功能可以节约用户时间,使工作更加简便。数字示波器通常带有模拟示波器上没有提供的一系列测量功能和分析选项。
数学运算函数包括加减乘除、积分和微分。测量统计(最小值、最大值和平均值)可以检定测量不确定性,在检定噪声和定时余量时,这是一项重要资源。许多数字示波器还提供了FFT功能。
对关注波形分析的“高需求用户”,示波器制造商正在中档示波器和高档示波器中提供更大的灵活性。某些制造商提供的软件允许定制复杂的测量,直接从示波器用户界面中执行数学函数和后期处理。例如,可以使用C++或Visual Basic编写测量程序,然后从示波器图形用户界面(GUI)中执行程序。用过这一功能,用户不需把数据传送到外部PC上,对关注波形分析的用户,这可以节约大量的时间。
[
本帖最后由 天天向上 于 2009-9-11 15:07 编辑 ]
10、最后一个、但也是同样重要的一个问题:演示、演示、还是演示!
如果您已经考虑了前面九了因素,您可能已经把范围缩小到能够满足标准的少量示波器中。现在应该试用这些示波器,进行并排比较。借用几天示波器,您将有时间全面评估这些示波器,您将有时间全面评估这些示波器。在使用每台示波器时,需要考虑的部分因素包括:
简单易用性:在试验期间,评估每台示波器的简便易用性.示波器是否有简便易用的专用旋钮,用于垂直灵敏度、时基速度、轨迹位置和触发等级等常用调节功能?从一项操作到另一项操作需要按多少个按钮?能否直观地运行示波器,同时把重点放在被测电路上?
显示响应速度:在评估示波器时,注意示波器的响应速度,不管是使用示波器诊断问题还是收集大量的数据,这都是一个关键因素。在改变V/格、时间/格、内存深度和位置设置时,示波器是否迅速响应?在打开测量功能时,再看一下示波器的响应速度。响应速度是否明显下降?
结论
在全面考察这些问题及评估示波器后,您应该对哪种型号真正满足你的需求已经做到胸有成竹。如果现在还不确定,您可能要与其他示波器用户讨论产品选型,或致电制造商技术支持人员。
词汇表
假信号 以低于Nyquist的速率(信号最大频率成分的两倍)取样,因此错误地重新排列信号频率成分的信号(通常是电接口信号)。
CAN 控制器区域网,这是汽车和工业应用中流行的一种强健的串行通信总线标准。
数字示波器 采用高速模数转换器(ADC)测量信号,然后使用标准计算机图形技术在屏幕(CRT或LCD)上显示信号的示波器。
GPIB 通用仪器总线,也称为IEEE-488总线,是一种广泛使用的接口,用来把测试仪器连接到计算机上及提供编程仪器控制能力。
谐波 信号的一种频率成分,是该信号基础谐波的整数倍。
I2C 继承电路间总线,一种短距离串行通信总线标准,由两个信号(时钟和数据)组成,在同一块印刷电路板上多个集成电路之间的通信中非常流行。
插入 数字示波器中使用的一种技术,其中一起使用不同模拟信道的模数转换器,一般来说,使用的信道越少,取样速率越高,内存深度更深。
L-C谐振电路 由电感和电容组成的电路,能够在一个频段内连续存储电子,并大体分布在电路谐振或调谐的一个频率上。
LIN 局部互联网络,这是一种短距离串行通信标准,在包含CAN总线的系统中非常常见。LIN的速度和复杂行都要低于CAN总线。
混合信号示波器(MSOs)信道数量超过查看模拟信号和数字信号常用信道数量的数字示波器。MSO一般拥有两条或四条模拟信道,至少拥有8位的垂直分辨率。其通常拥有16条数字信道,但其一般仅有1位的垂直分辨率。
SDRAM 同步动态随机访问内存,这是当前数字内存最流行的形式,它与上一代DRAM的区别在于,所有信号定时都是相对于一个时钟的。
SPI 串行外设接口,这是一种非常简单的短距离串行通信总线标准,其中由两个信号(时钟和数据)或三个信号(时钟,数据和选通)组成,在从ADC等微控制器外设中读取数据等应用中非常流行。
USB 通用串行总线,用来把外设(包括测试仪器)连接到计算机上的一种接口。
[ 本帖最后由 天天向上 于 2009-9-11 15:08 编辑 ]
资料汇总
这题目有点不符啊!叫示波器的发展历程还好点!
真心的希望版主多发些如此好的文章,对于数字示波器的一些选型上的疑问通过版主的文章解开了。谢谢版主。
回复 12楼 天天向上 的帖子
总结得很好