磁场强度H下降到零,但变压器铁芯中的磁通密度不能跟随磁场强度下降到零,而只能下降到某个磁通密度剩余值,这种现象称为变压器铁芯具有磁矫顽力,简称矫顽力,用Hc表示。变压器铁芯具有磁矫顽力,这是铁磁材料或磁性材料最基本的性质。同理,当第二个直流脉冲加到变压器初级线圈a、b两端时,变压器铁芯中的磁通密度B将按图2-2中新的磁化曲线2-3上升,磁通密度被磁场强度磁化到第二个最大值Bm2,使磁通密度产生一个增量ΔB,ΔB =Bm2-Br1 。
第二个直流脉冲结束以后,流过变压器初级线圈中的励磁电流下降到零,变压器初、次级线圈产生的反电动势,又会使磁通密度按另一条新的退磁化曲线3-4返回到第二个剩余磁通密度Br2处;当然,Br2同样也只是变压器铁芯被退磁时磁通密度变化过程中的又一个临时剩余值。
其余依次类推,第3、4个直流脉冲电压同样也会让磁通密度增加一个增量ΔB ,即:
ΔB = Bm3-Br2 = Bm4-Br3 = Bm1-0 (2-9)
(2-9)式中,ΔB为磁通密度增量;只要作用于开关变压器线圈上的脉冲电压的幅度U和脉冲宽度τ不变,则变压器铁芯片的磁化过程就会在磁通密度增量为常数(∆B = 常数)的条件下进行。
但在直流脉冲的幅度和宽度不变的情况下,磁通密度的增量ΔB不改变,并不意味着磁场强度的增量可以保证不变,这是磁强度度与磁场强度之间的一个重要区别。
经过n个直流脉冲电压之后,变压器铁芯中的最大磁通密度Bm和剩余磁通密度Br才能基本稳定在某个数值之上,即:脉冲序列的作用达到稳定状态后,磁化过程将沿原始曲线上某一固定局部磁滞回线n点重复;这时剩余磁通密度为Br n(Br n=Br),磁通密度变化无论磁场强度增长或降低,其ΔB值基本不变。显然,局部磁滞回线固定于什么位置,对某种材料来说只取决于∆B值的大小。如果∆B足够大,则局部磁滞回线的最低点位于最大局部磁滞回线的剩余磁通密度点Br点处。此时Br对应每个输入直流脉冲的起点,Bm对应每个直流脉冲的终点。
磁通密度达到最大值Bm后不再继续增加是可以理解的,因为,磁通密度和磁场强度既可以是势能也可以是位能,两者可以互相转换,它们与电容充放电的过程是很相似的。例如:当电源电压对电容充电时,电容两端的电压会上升;当电源断开的时候,电容就会对负载放电,其两端电压就会下降;当电容充电的电荷与放电的电荷完全相等的时候,电容两端电压纹波就会稳定在某个数值之上。
用∆H表示磁场强度增量,它在固定局部磁滞回线上磁通密度增量∆B相对应,即它们之间可用下面关系式表示:
ΔB = f(∆H) (2-10)
(2-10)式称为磁场强度增量∆H与磁通密度增量∆B的脉冲静态特性关系。在直流状态条件下,(2-10)式不成立。
磁场强度增量∆H和磁通密度增量∆B的对应关系还可以用下式表示:
μ△=ΔB/∆H—— 脉冲变压器 (2-11)
(2-11)式中,μ△ 称为脉冲静态磁化系数,或脉冲变压器的脉冲导磁率。由于脉冲导磁率的使用范围比较小,对于开关变压器我们同样也可以用平均导磁率μa的概念取而待之。即:
μa=ΔBa/∆Ha—— 开关变压器 (2-12)
(2-12)式中, μa为开关变压器的平均导磁率; ΔBa为开关变压器铁芯中的平均磁通密度增量; ∆Ha为开关变压器铁芯中的平均磁场强度增量。
脉冲导磁率μ△ 与平均导磁率μa 的区别在于:一般脉冲变压器输入脉冲电压的幅度以及宽度基本上都是固定的,并且是单极性脉冲,其磁滞回线的面积相对来说很小,因此,铁芯的脉冲导磁率μ△几乎可以看成是一个常数;而开关变压器输入脉冲电压的幅度以及宽度都不是固定的,其磁滞回线的面积相对来说变化比较大,铁芯导磁率的变化范围也很大,特别是双激式开关变压器,因此,只能用平均导磁率μa的概念来描述。
励磁电流或磁场强度对变压器铁芯进行磁化时也具有类似电容器充、放电的特点:当变压器初级线圈中的励磁电流产生的磁场强度对变压器铁芯进行磁化时,磁通密度就会增加,相当于对电容器充电;当变压器初级线圈中的励磁电流为零时,变压器初、次级线圈会产生反电动势,其感应产生的电流就会产生反向磁场对变压器铁芯进行退磁,使磁通密度下降,与充电电容器对负载放电的情况很类似。
当变压器铁芯被磁化时产生的磁通密度增量与变压器铁芯被退磁时产生的磁通密度增量(负值)完全相等的时候,变压器铁芯中的最大磁通密度Bm和剩余磁通密度Br就会分别稳定在某个数值之上。
此时,我们可称,变压器铁芯磁化过程已经进入了基本稳定状态,即:每输入一个直流脉冲电压,变压器铁芯中的磁通密度都会产生一个磁通密度增量ΔB,ΔB = Bm-Br,当直流脉冲结束以后,磁通密度又从最大值Bm回到剩余磁通密度Br的位置。这样,我们把磁化曲线所对应的Br值称为剩磁(或剩余磁通密度),而磁化曲线所对应的Bm值称为磁通密度的最大值。
不过,变压器铁芯磁化曲线中最大磁通密度Bm以及剩余磁通密度Br的值不是一成不变的,它们会随着输入脉冲电压的幅度以及脉冲宽度的改变而改变;只有在输入脉冲电压的幅度以及脉冲宽度基本保持不变的情况下,变压器铁芯磁化曲线中的最大磁通密度Bm以及剩余磁通密度Br的值才会基本保持不变。
至于要经过多少个直流脉冲电压之后,开关变压器铁芯中的磁通密度才达到最大值Bm,这个与直流脉冲电压的幅度有关,而且与直流脉冲电压的脉冲宽度还有关,即与开关变压器的伏秒容量大小有关。开关变压器的伏秒容量越大,对应每个直流脉冲产生的磁通密度增量ΔB数值就越小,因此,需要直流脉冲的个数就越多;反之,变压器的伏秒容量越小,需要直流脉冲的个数也越少。当变压器的伏秒容量很小时,可能只需要一个直流脉冲,就可以使磁通密度达到最大值Bm,甚至会使变压器铁芯出现磁饱和。
变压器的伏秒容量对磁化曲线的影响非常大,变压器的伏秒容量越大,对应每个直流脉冲电压产生的磁通密度增量ΔB相对也越小,磁通密度的最大值Bm也越小;同样一种变压器铁芯材料,选取不同的变压器的伏秒容量,对应的Bm值和Br值也是不一样的。因此,变压器的伏秒容量对于变压器设计是一个非常重要的参数。
如果变压器的伏秒容量取得比较小,而加到变压器初级线圈a、b两端的直流脉冲电压幅度又比较高,且脉冲宽度也比较宽,则流过变压器初级线圈的励磁电流将很大;此时,变压器铁芯中的磁通密度将很容易出现饱和。当变压器铁芯中的磁通密度出现饱和的时候,磁通密度B或磁通将不会随着磁场强度或励磁电流的增加而增加,此时的最大磁通密度一般称为饱和磁通密度,用Bs表示,对应的磁通密度增量用ΔBs表示。
这里还需补充说明:变压器铁芯充磁和退磁的过程虽然与电容器充放电的过程很相似,但还是有很大区别的。电容器充满电后,如果电源断开,不再对电容器继续充电,则电容器会对负载放电,并且放电过程将会一直进行下去,直到电容器存储的电荷全部释放光为止;而变压器铁芯被磁化到磁通密度的最大值Bm后,变压器初、次级线圈产生的反电动势,以及其感应电流产生的反向磁场对变压器铁芯进行退磁,却不能使磁通密度由最大值Bm退回到零,而只能退回到剩余磁通密度Br 。
当磁场强度H下降到零时,变压器铁芯中的磁通密度不能跟随返回到零,而只能退回到剩余磁通密度Br。这种现象称为变压器铁芯具有磁矫顽力,简称矫顽力,用Hc表示;这同时也说明变压器铁芯铁芯的磁化过程是不可逆的。变压器铁芯存在磁矫顽力这是铁磁材料或磁性材料最基本的性质;不同性质的磁性材料,其具有的磁矫顽力大小也不同;一般变压器铁芯都选用磁矫顽力较小的铁磁物质为制造材料。
变压器铁芯的磁矫顽力Hc与剩余磁通密度Br的概念是不一样的,从磁矫顽力的定义来说,磁矫顽力Hc就是变压器铁芯退磁时,由最大剩余磁通密度Brm下降到0,对应所需要的磁场强度,不过这里的最大剩余磁通密度Brm是指变压器铁芯达到磁饱和时所产生的剩余磁通密度Br,因为一般意义的剩余磁通密度Br都是对应动态最大磁通密度来说的。
但我们不要理解为,只有变压器铁芯达到磁饱和后,才会有磁矫顽力;在变压器铁芯被磁化的过程中,磁矫顽力从始至终都是存在的,只不过与习惯上定义的Hc在数值上不一样。磁矫顽力与导磁率一样,也是人们用来掩盖住人类至今还没有完全揭示的,磁场强度与电磁通密度之间内在关系的概念。
因此,严格来说,磁矫顽力也是随着磁场强度H大小改变的,它与磁通密度一样,会随着磁场强度H的增大,而趋于饱和。这就是为什么,变压器铁芯中的最大磁通密度Bm和剩余磁通密度Br最终能够分别稳定在某个数值之上的主要原因。
由图2-2我们可以看出,随着磁通密度的增加,需要磁场强度增加更大,因为铁芯的导磁率会随着磁场强度的增大反而变小,而铁芯的磁矫顽力也不会因磁场强度的增大而增大,它总会有一个极限值;当变压器线圈中产生反电动势和感应电流,感应电流产生的反向磁场对变压器铁芯进行退磁时,铁芯的导磁率和磁矫顽力的增量反而会向增大的方向变化,因此,对于每输入一个脉冲电压,总可以在磁通密度和磁场强度以及磁矫顽力三者之间找到一个动态平衡点,使变压器铁芯中的最大磁通密度Bm和剩余磁通密度Br能够达到相对稳定。