模拟视频技术和应用(一)
模拟视频信号已经应用了几十年,至今仍在使用。最原始且最常见的通用视频标准包括了NTSC(美国国家电视系统委员会)以及PAL(逐行倒相制式)。其它的现代消费模拟视频传输系统包括了S-Video、分量视频(Component Video)、专业G'B'R'视频以及计算机R'G'B'系统。本文将探讨部分模拟视频信号的需求,并讨论它们之间有何相似点和差别以及如何简化此类视频系统的模拟输入/输出设计。
全部数字化尚未实现
现代的视频系统通常同时在前端及后端采用数字化处理。这是由于此类系统确实拥有较好的灵活性,并具有相应的低成本及集成特性,因而数字化产品更吸引消费者。既然如此,那么为什么不简单的将所有相互连接的视频都放到数字域处理呢? 数字视频传输以串行数字视频(SDV或SDI)的形式推广了若干年,但由于成本问题,应用主要局限于专业广播系统。新近的数字传输系统包括了DVI以及HDMI。此类系统得到较好的普及,特别是针对于高端系统。 在2006年的国际消费电子展上,“年代久远”的模拟视频传输系统——分量视频——仍被视为最主要的机顶盒与显示器互连方式。同时,许多“低成本”的视频系统虽然缺乏高端特性,但仍广泛应用于世界范围。在某些地区,价格仍然是约束消费者购买能力的最重要因素,大多数的居民无法承受HDTV的价格。因此传统的CVBS及S-Video将继续服役至若干年之后。
视频的命名法及背景
视频的色彩信息通过线性化的(三原色)红、绿及蓝(RGB)分量获取。由于CRT显示技术的限制,此类基本的色彩信息需要采用非线性的形式(即所谓的伽玛矫正[gamma-corrected color])进行处理。为了区分真RGB以及非线性的伽玛修正RGB,人们采用了R'G'B'。 由于全部三个信号需求较大带宽,因此传统的消费视频无法使用R'G'B'。为了降低带宽、成本,并解决延迟及现今的运行功耗等问题,R'G'B'信号在算法上进行了处理,从而造就了不同形式的视频信号。 最为重要的信号是亮度(brightness,或称之为光亮度[luminance])。国际照明委员会(CIE)所规定的真实亮度(Y)的解析度应通过线性化的RGB得到。由于在RGB中加入了非线性的成分(Gamma),亮度将无法保持真实性。因此,针对所有的视频系统,人们采用了光亮度(luma Y')并在技术上严格的定义。 类似的,由于采用了非线性化的R'G'B'术语,色浓度(chroma,C')的称谓也取代了原本的色度(chrominance)——亦称为色彩信息,由色调及饱和度组成。色彩所具有的不同信号P'B、P'R、R' ?C Y'以及B' ?C Y'同样参照此方式表示非线性化的伽玛修正信号。其它的术语包括了U、V、I以及Q,但一般不作标刻记号,因为此类术语仅作为数学方程式的符号而没有用于CIE色彩空间。尽管如此,仍然有观点认为这些术语也应具有标刻记号,因为它们同样基于非线性化的元素。图1所示的简化RGB信号流展示了此类视频术语创建的方式,但忽略了某些元素,例如同步信息。
不断地学习,才会有创新!
淘宝小店:手机、qq点卡、游戏点卡自动充值 http://shop63727265.taobao.com/
图1 ?C消费接口的通用RGB视频信号流
模拟视频传输——CVBS及S-Video 最初的NTSC及PAL系统所采用的单线传输系统通常称为合成视频基带信号,即CVBS。一般来说,此类系统的带宽限制低于6MHz。但需要注意,SMPTE(运动图像及电视工程师协会)的170M标准在技术上并没有以任何方式对亮度通道的带宽进行限制,仅是针对色度或色彩不同的信号进行了限制。尽管如此,由于射频传输的需要,绝大多数系统还是把带宽限制在4.2MHz。
CVBS信号最为重要的电压电平需求包括了-40 IRE(?C286mV用于NTSC以及?C300mV用于PAL)同步信号以及+100 IRE(714mV用于NTSC以及700mV用于PAL)视频信号。此类电平可在标准间细微的变化,但其所示的值仍分别代表了此类信号的一般电压。
事实上CVBS信号在这个140 IRE的区间,具有75%的色彩饱和度。但是,许多人都忽略了色彩可达到100%的饱和度。从而使得CVBS信号有可能达到的值分别为NTSC:286mV + 935mV =1.221Vpp,PAL:300mV + 933.5mV = 1.2335Vpp。该电压值高于其它标准的视频信号,一旦忽略,将有可能导致潜在的视频信号削波失真。
CVBS信号最大的问题之一在于亮度与色度信号的组合。由于此类信号可能占据相同的频谱,因此,很难将信号彼此分离却不显露人为处理的痕迹。这就是存在众多相异的视频解码(其专业术语诸如2D、3D、3D自适应等)的梳状滤波器。但即使是采取了诸如此类的技术,在试图分离两个视频信号时,人为处理的痕迹仍然有可能,或是确实存在。
消除此问题的最好办法是在最开始就不将亮度信号与色度信号合并。S-Video正是如此,且可生成比CVBS更优良的图像。S-Video的带宽与CVBS极为相似,通常低于6MHz。使用S-Video的唯一缺点是必须采用两条传输线。
不断地学习,才会有创新!
淘宝小店:手机、qq点卡、游戏点卡自动充值 http://shop63727265.taobao.com/
模拟视频技术和应用(二)
模拟视频信号已经应用了几十年,至今仍在使用。最原始且最常见的通用视频标准包括了NTSC(美国国家电视系统委员会)以及PAL(逐行倒相制式)。其它的现代消费模拟视频传输系统包括了S-Video、分量视频(Component Video)、专业G'B'R'视频以及计算机R'G'B'系统。本文将探讨部分模拟视频信号的需求,并讨论它们之间有何相似点和差别以及如何简化此类视频系统的模拟输入/输出设计。
模拟视频传输——分量视频
为了在S-Video的基础上进行改良,分量视频出现了,免除了对色度信号的调制,从而最终减少了误差。分量模拟视频保持了重要的一致亮度(Y')信息,但却分别保存了色彩差异的信息。P'B是蓝色的色彩差异信号,而非原先用于数字域色彩差异的C'B 。类似的,P'R是红色的色彩差异信号,而C'R则是数字域中红色的差异。
分量视频亮度的1Vpp电压幅度需求在本质上于与CVBS亮度相同。亮度同步信息为 -300mV信号,视频信息为700mV信号,在同步信号电平之上。色彩差异信号可支持700mVpp,其同步信息处于电压范围的中点,而非亮度的底端。
分量模拟视频(Y'P'BP'R)包括了多个差分格式。此类格式包括了标准清晰度(SD)、增强型清晰度(ED)以及高清晰度(HD)视频。SD视频包括了基于NTSC的480i (aka 525i)以及基于PAL的576i (aka 625i),在此 ‘i’ 标注指代了隔行(interlaced)视频。此类视频系统具有高达6.75MHz的亮度带宽以及3.375MHz的P'B 及 P'R 信号带宽。对于同步信息来说,除了色彩差异信号采用了中点电平之外,其余均与CVBS相同。
增强型清晰度(ED)视频包括了基于NTSC的480p (aka 525p)以及基于PAL的576p (aka 625p)。在此 ‘p’ 标注指代了逐行扫描,因此需求更大的带宽。亮度信息限制在12MHz,同时色彩差异信息限制在6MHz。同步电平的需求与480i一致,但宽度较短(2.33us vs. 4.7us),刷新率较高。
高清晰度(HD)视频包括了720p、1080i 以及 1080p。720p及1080i 的亮度信号所具有的带宽限制为30MHz,同时其色彩差异信号的带宽限制为15MHz。1080p的亮度信号限制于60MHz,色彩差异信号限制于30MHz。SMPTE的274M及296M标准允许改变帧速率及采样速率,从而可改变此类模拟带宽,但绝大多数系统还是采用了上述的数值。在此须注意到,带宽及同步宽度可以,也确实在,随着其各自的波形而改变,毕竟针对每一信号都有诸多的须考虑选项(720p多达8个,1080i/1080p多达11个)。
此类HD视频信号的电压需求与480i及480p的需求一致。亮度通道需求1Vpp,同时色彩差异通道需求700mVpp。但HD信号的同步信息却有所不同,采用了三电平(tri-level)同步。尽管如此,其底端电平仍将随着CVBS、480i 及 480p所依循的传统的300mV单同步(single-sync)脉冲而漂移。由于三电平同步及更快的信号率,720p的同步宽度缩短至0.54us,1080i短至0.59us,而1080p则可以缩短至0.296us。
模拟视频传输——计算机及专业接口
当涉及到计算机的R'G'B'视频信号时,您将面对一个信号所需求超大矩阵,该矩阵基于像素分辨率及刷新率,兼容大部分的视频电子标准协会(VESA)标准。在此须注意,在计算机领域,RGB尽管常用,但其本质属于非线性的伽玛修正信号,实际上应为R'G'B'。消费类视频信号与R'G'B'之间最大的不同点在于全部三个R'G'B'信号均需求及其一致的信号带宽。
R'G'B'信号具有最高的频率需求,可超过148.5MHz(1920 x 1440 于 75Hz 时),并且毫无疑问的还将更高。因此,处理能力需要充分的提升以满足上述三个超大带宽的信号。而诸如Y'P'BP'R的系统对处理能力的需求则较低(由于采用了4:2:2的处理),因此可用于较为廉价的系统。对全部三个信号的定时同步是极为重要的,否则将产生色彩偏移(color shifting)。为产生纯净的白色,所有三个信号都必须是100%的饱和,而同时仅有的亮度信号是作为消费类信号的需求。一般来说,将亮度(brightness或Luma)从色调/饱和度、色浓度或色彩差异信息中分离处理可实现更轻松的校准。对于消费类视频信号来说,定时同步也不再像对于R'G'B'那么至关重要。
计算机R'G'B'的电压需求与700mVpp的亮度信号需求大致相同。唯一的差别是其同步信号可能但不一定包含在信号中。同步信息可独立完成,在此情况下需求两根独立的信号线——水平同步线及垂直同步线。某些时候,上述两个同步信号也可合并至单个信号——H+V同步信号。大量的时间及同步信息被包含在绿色信号中——R'G'sB'。其它的时间及同步信息被包含在全部三个信号中——R'sG'sB's 或 sR'G'B'。当同步信号内嵌至视频信号时,其幅度为300mVpp,与传统的亮度信号一致。很明显,同步持续时间取决于信号的分辨率及刷新率。此参数可变,可从3.8us(6?0 x 480 于 60 Hz时)缩短至0.74us (1920 x 1200 于 85Hz时),乃至更短,例如,降低消隐(reduced blanking)的1920 x 1200 分辨率于 60Hz时需要0.208s的刷新同步。
最后,在专业及广播系统中,所采用的将是G'B'R'。SMPTE 分量标准规定了亮度信息将被置于第一通道,蓝色色彩差异信息被置于第二通道,而红色色彩差异信息被置于第三通道,该组成与Y'P'BP'R的命名法一致。由于亮度通道(Y') 携带了同步信息,而绿色通道(G')也携带了同步信息,在此层意义上G'应排在首位。而由于蓝色色彩差异通道(P'B)居中,红色色彩差异通道(P'R)位于末尾,在此层意义上B'信号应居于第二通道而R'应居于第三通道。从而硬件可使用G'B'R'实现更好的兼容性而非R'G'B'。
对于以下的每一标准——480i/525i、576i/625i、480p/525p、576p/625p、720p、1080i 以及 1080p来说,每个G'B'R'信号的视频及同步幅值都分别等同于Y'的需求。在此须注意,由于众多G'B'R'系统的同步被内嵌至全部三个通道,但不一定是所有的系统都如此。此类系统带宽的需求实质上等同于上述方法中SD、ED及HD标准所分别对应的亮度带宽需求。与计算机的R'G'B'信号类似,对于视频信号及其显示的校准来说,其每一信号的定时也不是那么至关重要。
表1例举了视频信号的模拟需求。由于每一视频系统都有许多其它的不确定性,下列数字仅代表了最优的起始值。对于理想的最小化转换速率值来说,通式SR = (2 Pi F 0.707 Vpeak * 2)采用了Vpeak表述1V (2Vpp),并假定输出缓冲处于最差状态下,0.707作为-3dB在给定频率点上的-3dB幅值,而2倍乘缓冲的因子仅作为保障。在实际系统中,视频信号不需要从0V上升至1V(1Vpp or 0.5Vpeak),而更趋向于0V 至 700mV(350mV峰值)以实现从纯黑至纯白。对于输入缓冲器来说,其幅度是输出缓冲器所需求的一半。因此,表1中所采用的信息仅可作为起始值。 * 通常采用限制(limit)表述,而非需求(required) 表1:基本模拟信号需求
[
本帖最后由 lixiaohai8211 于 2010-3-25 08:15 编辑 ]
不断地学习,才会有创新!
淘宝小店:手机、qq点卡、游戏点卡自动充值 http://shop63727265.taobao.com/
不断地学习,才会有创新!
淘宝小店:手机、qq点卡、游戏点卡自动充值 http://shop63727265.taobao.com/
模拟视频技术和应用(四)
模拟视频信号已经应用了几十年,至今仍在使用。最原始且最常见的通用视频标准包括了NTSC(美国国家电视系统委员会)以及PAL(逐行倒相制式)。其它的现代消费模拟视频传输系统包括了S-Video、分量视频(Component Video)、专业G'B'R'视频以及计算机R'G'B'系统。本文将探讨部分模拟视频信号的需求,并讨论它们之间有何相似点和差别以及如何简化此类视频系统的模拟输入/输出设计。
电源电压及功耗 决大多数的视频系统采用独立供电的数据转换器(3.3V供电)。如果该电源能同时用于视频滤波器/放大器,则系统将有可能减少一至两个电源,从而使得系统更简洁,并可降低了成本。THS73x3系列器件是该领域的探路者,可运行于2.7V~5V的单电源。该系列器件采用的BiCom-3处理工艺,设计工作于此类电压,且在其整个电压范围内都没有性能上的降低。实际上,某些规格参数,例如差分增益及相位,都因更低的电源电压而得到改善。
图8展示了THS7303作为DAC的放大器缓冲器的典型配置,可接收外部输入,采用了3.3V电源供电,并在输出端采用了中沉校准(SAG correction)。 该图可作为本文其他部分的参考。
图8:典型系统配置,THS7303采用了3.3V电源电压,并采用DC+偏移量(DC+shift)、AC-STC以及AC偏置模式耦合DAC输入,中沉校准(SAG corrected)线路驱动输出。
另一个考虑因素是功耗。与THS73x3系列类似的5V单电源供电部件并不是很少见,但很多器件的功耗都超过50mW,甚至高达1.2W,从而可能导致很高的芯片温度并容易影响设备的长期可靠性。但THS73x3系列器件的功耗仅为55mW, 采用3.3V供电运转。该特性卓有成效地降低了所关注的热耗,并确保了可靠性。
该系列器件的每一通道都可独立的关断(shutdown),以降低功耗。当所有的通道都处于关断状态时,总的电流损耗小于1uA。因此,此类器件可应用于诸如便携式或USB供电系统等功耗敏感性的系统。
信号耦合
对于单电源供电低至2.7V的设计来说,其中的关注点之一是视频信号是否会产生削波失真。在此,适当的直流偏置对于设计来说是十分重要的。对于不同类别的视频系统及设计,关键点之一是提供足够的灵活性以适当的调节THS73x3的偏置。
在系统设计中若采用了THS7303或THS7313作为6dB增益放大器,并由接地参考的DAC或编码器进行驱动,则直流(DC)输入模式是理想的。问题在于DAC所产生的电压将低至何种程度。如果同步信号(在视频信号中典型的处于最低电压)低于50mV,则6dB放大器的输出需要产生低于100mV的电压。然而由于晶体管的饱和状态限制(CMOS及双极型都存在此类情况),使得放大器极难产生此类低电压。
为了消除此类限制,所有的THS73x3产品都采用了DC+偏移模式,以为视频输入信号提供内置的直流电压偏置。由于该偏置仅为内置,因而将不会对信号产生影响。该偏置还确保了THS73x3在输入不适宜(甚至低至0V)的情况下输出端也不会因为饱和而导致削波。
如果DAC输出电压最低值仅为100mV,则直流输入模式是最优的。该模式对系统所施加的偏置电压没有要求。但需要注意的是任意放大器都具有偏置,THS73x3也不例外。尽管偏置电压典型的很小,但部件间(part-to-part)的差异确实存在。
如果DAC采用了诸如3.3V、1.8V的电源或外部的输入作为参考,则采用AC耦合是最优的模式。AC耦合允许THS73x3忽略源极的直流偏置点,并将重新确立其自身的直流偏置点。AC耦合选项包括了AC偏置(AC-bias)以及AC同步端钳位(sync tip clamp)。
[
本帖最后由 lixiaohai8211 于 2010-3-25 08:25 编辑 ]
不断地学习,才会有创新!
淘宝小店:手机、qq点卡、游戏点卡自动充值 http://shop63727265.taobao.com/
AC偏置模式非常简单。THS73x3通过两个电阻设定电源与地电平之间的电压划分。AC偏置模式的输入阻抗约为20kΩ。因此,所使用的电容应该足够大以确保任意倾斜(tilt)或下降(droop)问题的最小化。一般来说,4.7uF ~ 10uF的电容即可合乎要求。该模式最为适用于色度(Chroma)或色差信号,同时也可用于亮度(Luma)信号、G'B'R' 信号或计算机R'G'B' 信号。由于信号是AC耦合,且DC偏置点也随平均信号电平而变化,因此,对于携带同步信息的信号,最好采用AC偏置模式,并通过5V电源供电,以确保不产生削波失真。
正在申请专利的AC同步端钳位(STC)模式(图9)最为适用于处于视频信号最低电平的同步信号。这就意味着亮度(Y')信号、带同步的G'B'R'信号或是带同步的计算机R'G'B'信号都很适宜采用AC-STC模式。THS73x3的同步端钳位系统具有内置的电流吸收(current-sink)以释放耦合电容,单个滤波器以消除有可能出现的高频信号相互干扰,单个放大器用以监测输入端电压与参考电压之间的差值,并具有一个晶体管以用于在信号低于参考电平时对电容充载。因此,该同步钳位系统是动态的系统,在任意情况下都不依赖于定时校准。此类系统还通常被称为直流重构(DC-restore)系统,优于二极管钳位系统。后者的问题在于易受任意高频信号或过冲(overshoot)的影响,从而将导致不期望的DC偏置点过度偏移以及信号的削波失真。
图9:AC-STC基本系统
THS73x3系列的灵活性允许用户调节某些AC-STC功能,包括了500 kHz、2.5MHz 及 5MHz之间的STC滤波器。这点非常重要,因为所应用的信号标准(敬请参见表1)具有不同的水平同步宽度(horizontal sync width)。如将500kHz滤波器应用于720p亮度信号,STC电路将无法衔接操作,而系统也将悬起。但如果是应用于充满噪声或强烈振荡的CVBS信号,500kHz滤波器将很好的抑制THS73x3内部的直流偏置点漂移
AC-STC模式允许选择放电电流(discharge current)。如果出现于THS73x3输入端的电压下跌至低于参考电压,系统将以最高2mA的电流充电以增加电压。而如果电压一定程度的高于参考电压,情况又如何呢?放电电流将降低电容上的电压,放电速率等于I/C = dV/dT。该电流可选择为2uA、6uA以及8uA。具有高的放电电流使得系统可更快的捕捉信号并更好的抑制嗡鸣(hum)噪声(当50Hz或60Hz的线路信号耦合至系统时)。其它时候系统则需求较低的放电速率以改善线路上的倾斜或下降,特别是当视频信号在整条线路上保持不变(hold constant)的时候。由于AC耦合及放电电流的影响,DC信号将会向下倾斜,通常可接受的全线路倾斜小于1 IRE。此类可选择性的允许系统实质性的连接至任意外部源,而无需手动改变输入电容值。
图8还展示了2:1输入多路复用器(MUX)的特性。此多路复用器,并结合用户可配置的输入耦合方式(不同通道间完全独立),可允许THS73x3应用于众多不同的系统。
[
本帖最后由 lixiaohai8211 于 2010-3-25 08:27 编辑 ]
不断地学习,才会有创新!
淘宝小店:手机、qq点卡、游戏点卡自动充值 http://shop63727265.taobao.com/
不断地学习,才会有创新!
淘宝小店:手机、qq点卡、游戏点卡自动充值 http://shop63727265.taobao.com/