首页 > 器件类别 > 分立半导体 > 二极管

2EZ8.7_AY_00001

Zener Diode

器件类别:分立半导体    二极管   

厂商名称:强茂(PANJIT)

厂商官网:http://www.panjit.com.tw/

器件标准:  

下载文档
器件参数
参数名称
属性值
是否无铅
不含铅
是否Rohs认证
符合
厂商名称
强茂(PANJIT)
包装说明
O-XALF-W2
Reach Compliance Code
not_compliant
ECCN代码
EAR99
二极管元件材料
SILICON
二极管类型
ZENER DIODE
JEDEC-95代码
DO-15
JESD-30 代码
O-XALF-W2
端子数量
2
封装主体材料
UNSPECIFIED
封装形状
ROUND
封装形式
LONG FORM
峰值回流温度(摄氏度)
NOT SPECIFIED
极性
UNIDIRECTIONAL
最大功率耗散
2 W
标称参考电压
8.7 V
表面贴装
NO
技术
ZENER
端子形式
WIRE
端子位置
AXIAL
处于峰值回流温度下的最长时间
NOT SPECIFIED
最大电压容差
5%
工作测试电流
58 mA
文档预览
2EZ6.8~2EZ51
SILICON ZENER DIODES
VOLTAGE
FEATURES
• Plastic package has Underwriters Laboratory Flammability
Classification 94V-O
• High temperature soldering : 260°C /10 seconds at terminals
• Lead free in compliance with EU RoHS 2011/65/EU directive
0.300(7.6)
0.230(5.8)
1.0(25.4)MIN.
6.8 to 51 Volt
POWER
2 Watt
0.034(0.86)
0.028(0.71)
• Low inductance
• Case: JEDEC DO-15, Molded plastic over passivated junction
• Terminals: Solder plated, solderable per MIL-STD-750, Method 2026
• Polarity: Color band denotes cathode end
• Standard packing: 52mm tape
• Weight: 0.014 ounce, 0.0397 gram
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
Parameter
Max Steady State Power Dissipation @T
L
<80
O
C (Note A)
Derate above T
A
=25
O
C
Peak Forward Surge Current 8.3ms single half sine-wave
soperimposed on rated load
Thermal resistance Junction to Ambient
Junction to Lead
Operating Junction and Storage Temperature Range
S ymb o l
P
D
I
FSM
R
JA
R
JL
T
J
, T
STG
1.0(25.4)MIN.
MECHANICAL DATA
0.140(3.6)
0.104(2.6)
Va lue
2
15
60
32
-55 to + 150
Uni t
Watts
Amps
o
C/W
o
C
NOTE:
A.Mounted on infinite heat sink with L=2mm
B.Measured on 8.3ms, and single half sine-wave or equivalent square wave, duty cycle=4 pulses per minute maximum
February 21,2014-REV.04
PAGE . 1
2EZ6.8~2EZ51
Nomi nal Zene r Vo ltag e
Part Number
No m. V
2.0 Watt ZENER
2EZ6.8
2EZ7.5
2EZ8.2
2EZ8.7
2EZ9.1
2EZ10
2EZ11
2EZ12
2EZ13
2EZ14
2EZ15
2EZ16
2EZ17
2EZ18
2EZ19
2EZ20
2EZ22
2EZ24
2EZ25
2EZ27
2EZ28
2EZ30
2EZ33
2EZ36
2EZ39
2EZ43
2EZ47
2EZ51
6.8
7.5
8.2
8.7
9.1
10
11
12
13
14
15
16
17
18
19
20
22
24
25
27
28
30
33
36
39
43
47
51
6.46
7.13
7.79
8.27
8.65
9.5
10.45
11.4
12.35
13.3
14.25
15.2
16.15
17.1
18.05
19
20.9
22.8
23.75
25.65
26.6
28.5
31.35
34.2
37.05
40.85
44.65
48.45
7.14
7.88
8.61
9.14
9.56
10.5
11.55
12.6
13.65
14.7
15.75
16.8
17.85
18.9
19.95
21
23.1
25.2
26.25
28.35
29.4
31.5
34.65
37.8
40.95
45.15
49.35
53.55
2
2
2
2
3
4
4
5
5
6
7
8
9
10
11
11
12
13
14
18
18
20
23
25
30
35
40
48
73.5
66.5
61
58
55
50
45.5
41.5
38.5
35.7
33.4
31.2
29.4
27.8
26.3
25
22.8
20.8
20
18.5
17
16.6
15.1
13.9
12.8
11.6
10.6
9.8
700
700
700
700
700
700
700
700
700
700
700
700
750
750
750
750
750
750
750
750
750
1000
1000
1000
1000
1500
1500
1500
1
0.5
0.5
0.5
0.5
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
5
5
5
4
3
3
1
1
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
4
5
6
6.6
7
7.6
8.4
9.1
9.9
10.6
11.4
12.2
13
13.7
14.4
15.2
16.7
18.2
19
20.6
21.3
22.5
25.1
27.4
29.7
32.7
35.8
38.8
2EZ6.8
2EZ7.5
2EZ8.2
2EZ8.7
2EZ9.1
2EZ10
2EZ11
2EZ12
2EZ13
2EZ14
2EZ15
2EZ16
2EZ17
2EZ18
2EZ19
2EZ20
2EZ22
2EZ24
2EZ25
2EZ27
2EZ28
2EZ30
2EZ33
2EZ36
2EZ39
2EZ43
2EZ47
2EZ51
V
Z
@ I
ZT
Mi n. V
Max. V
Ma xi mum Ze ner Imp e da nce
Z
ZT
@ I
ZT
mA
Z
ZK
@ I
ZK
mA
uA
Leakage Current
I
R
@V
R
V
Marking Code
February 21,2014-REV.04
PAGE . 2
2EZ6.8~2EZ51
2.5
500
P
D
, Maximum Power Dissipation (W)
P
PK
, PEAK SURGE POWER (WATTS)
2
L=2mm
250
100
100
50
25
15
10
5
0.1 0.20.3 0.5
RECTAN GULAR
NON - REPETIT IVE
T
J
=25
O
C PRIOR
TOINTIA L PULSE
1.5
1
L
L
0.5
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
1
2 3
5
10 20 30 50
100
T
L
, Lead Temperature (
)
P.W.PULSE WIDTH(ms)
Fig.1 Power Temperature Derating Curve
FIGURE 2. MAXIMUM SURGE POWER
FIGURE 3. TYPICAL THERMAL RESPONSEL,
APPLICATION NOTE:
Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determinejunction
temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended:
Lead Temperature, T
L
, should be determined from:
T
L
=
q
L
A
P
D
+ T
A
O
q
L
A
is the lead-to-ambient thermal resistance ( C/W) and Pd is the power dissipation. The value for
q
L
A
will vary and depends
on the device mounting method.
q
L
A
is generally 30-40
O
C/W for the various clips and tie points in common use and for printed
circuit board wiring.
The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point.
The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges
generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of
TL, the junction temperature may be determined by:
T
J
= T
L
+
D
T
JL
D
T
JL
is the increase in junction temperature above the lead temperature and may be found from Figure 3 for a train of power pulses
or from Figure 10 for dc power.
D
T
JL
=
q
J
L
P
D
For worst-case design, using expected limits of I
Z
, limits of P
D
and the extremes of T
J
(
D
T
J
) may be estimated. Changes in voltage,
V
Z
, can then be found from:
D
V =
q
V
Z
D
T
J
q
V
Z
, the zener voltage temperature coefficient, is found from Figures 5 and 6.
Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance.
For best regulation, keep current excursions as low as possible.
Data of Figure 3 should not be used to compute surge capa-bility. Surge limitations are given in Figure 2. They are lower than would
be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small
spots resulting in device degradation should the limits of Figure 2 be exceeded.
February 21,2014-REV.04
PAGE . 3
2EZ6.8~2EZ51
P
D
, Maximum Power Dissipation (W)
T
A
, Ambient temperature
(°C
)
FIGURE 8.TYPICAL THERMAL RESISTANCE
February 21,2014-REV.04
PAGE . 4
2EZ6.8~2EZ51
Part No_packing code_Version
2EZ6.8_AY_00001
2EZ6.8_AY_10001
2EZ6.8_B0_00001
2EZ6.8_B0_10001
2EZ6.8_R2_00001
2EZ6.8_R2_10001
For example :
RB500V-40_R2_00001
Part No.
Serial number
Version code means HF
Packing size code means 13"
Packing type means T/R
Packing Code
XX
Packing type
Tape and Ammunition Box
(T/B)
Tape and Reel
(T/R)
Bulk Packing
(B/P)
Tube Packing
(T/P)
Tape and Reel (Right Oriented)
(TRR)
Tape and Reel (Left Oriented)
(TRL)
FORMING
1
st
Code
A
R
B
T
S
L
F
Packing size code
N/A
7"
13"
26mm
52mm
PANASERT T/B CATHODE UP
(PBCU)
PANASERT T/B CATHODE DOWN
(PBCD)
Version Code
XXXXX
2
nd
Code
HF or RoHS
1
st
Code 2
nd
~5
th
Code
0
1
2
X
Y
U
D
HF
RoHS
0
1
serial number
serial number
February 21,2014-REV.04
PAGE . 5
查看更多>
刚大学毕业,如何进入嵌入式开发行业?
在学校专业是软件工程,java和.net都学过,现在毕业了,想做嵌入式开发,有哪位大虾知道如何能快速进入嵌入式行业?刚大学毕业,如何进入嵌入式开发行业?找个嵌入式行业的工作就进入了!~俺不会java什么的,只学过单片机,430,ARM一类的,不知道能不能进入嵌入式行业?进去后前途如何呀?所有MCU应用都是所谓的嵌入式应用,去找相关工作就是,新人大多没有什么经验,本来就是要在工作中学习和成长的,不要太在意工资,看能学到什么才是重要的。同意楼上的意见,经验是在学习中积累的。如果真的...
夏天了吗 综合技术交流
PCB打样总是不能直接满足阻抗要求
画高速PCB有个很烦人的事情就是阻抗控制,每次画好了板子发给板厂,收到的邮件回复总是需要调整线宽线距,而且经常有些线宽调整了也还是达不到阻抗要求,甚至被迫调整器件位置和走线路径。我想过将板厂上次给出的线宽线距记下来,然后下一个板子也这样画。新板子画好发出去之后板厂还是说不能满足阻抗要求,然后又给出了调整的数据,问接不接受PCB打样总是不能直接满足阻抗要求一般的四层板都是7628层压结构的阻抗不知道高速PCB是怎么选的PolarSI8000可以整阻抗控制换几...
Nubility 综合技术交流
《Python编程快速上手》7、正则表达式
正则表达式是一种匹配的方式,我们在进行多位字符查找是可能会通过不断的遍历比较进行对比,如果样本比较大可能需要非常多的次数进行判断,正则表达式的存在可以大大简化这个过程。正则表达式,简称为regex,是文本模式的描述方法。例如,\d是一个正则表达式,表示一位数字字符,即任何一位0到9的数字。Python使用正则表达式\d\d\d-\d\d\d-\d\d\d\d,来匹配前面isPhoneNumber()函数匹配的同样文本:3个数字、一个短横线、3个数字、...
秦天qintian0303 综合技术交流
阻抗的测量
阻抗的测量是一个很复杂的问题。阻抗的大小、性质、工作频率、使用场合以及测量准确度要求的不同,测量方法大不一样。在电气测试中,阻抗元件一般工作在直流或不太高的频率下,但阻抗元件也并非纯理想元件,每个元件与测量线路也都可能或多或少地伴有寄生电容和损耗存在,其等效电路是相当复杂的。有些元件的阻抗常是非线性的,或者是可变的,这就给测量增加了困难。阻抗的测量除采用电气指示仪表测量外,还经常采用伏安法、电桥法。一、伏安法从欧姆定律可知,一个电阻R上施加一恒定电压U,可以根据所通过电流...
一世轮回 综合技术交流
【转】电路系统设计分析方法
一个电路系统的完整设计过程,包括系统设计、功能设计、容差设计三个阶段。系统设计似乎是其中最务虚的部分,但又是最重要的部分,也是最迷茫最感觉无从下手的部分。在借鉴航天系统总体设计思路、FMEA工作流程、SIL功能安全设计等多方面的设计方法后,集思广益,综合出了一个基于接口单一故障状态下的错误处理措施的系统方法。本来也没觉得什么,但在多次讲课后,多次听到听众反映“此法甚妙,它可以在设计师没有可靠性设计经验的情况下,帮助打开一扇可以发现可靠性隐患和找到解决方法的大门,如果用好了...
wstt 综合技术交流
上海国际嵌入式展 - Raspberry Pi AI kit 演示
在为期三天的上海国际嵌入式展会中,树莓派和上海晶珩一起展示了众多的基于树莓派和CODESYS的解决方案,没去过展会现场的小伙伴千万别错过这篇文章!RaspberryPi团队带来了他们最新发布的RaspberryPiAIKit。RaspberryPiAI套件,捆绑了RaspberryPiM.2HAT+与Hailo-8L13TOPSAI加速模块,与RaspberryPi5搭配使用。此AI套件提供了经济且低功耗的方式访问高性能AI。可应...
树莓派开发者 综合技术交流