首页 > 器件类别 > 分立半导体 > 二极管

3EZ22

22 V, 3 W, SILICON, UNIDIRECTIONAL VOLTAGE REGULATOR DIODE, DO-15

器件类别:分立半导体    二极管   

厂商名称:强茂(PANJIT)

厂商官网:http://www.panjit.com.tw/

器件标准:

下载文档
3EZ22 在线购买

供应商:

器件:3EZ22

价格:-

最低购买:-

库存:点击查看

点击购买

器件参数
参数名称
属性值
是否无铅
不含铅
是否Rohs认证
符合
零件包装代码
DO-15
包装说明
O-PALF-W2
针数
2
Reach Compliance Code
_compli
ECCN代码
EAR99
外壳连接
ISOLATED
配置
SINGLE
二极管元件材料
SILICON
二极管类型
ZENER DIODE
最大动态阻抗
8 Ω
JEDEC-95代码
DO-15
JESD-30 代码
O-PALF-W2
元件数量
1
端子数量
2
最高工作温度
150 °C
最低工作温度
-55 °C
封装主体材料
PLASTIC/EPOXY
封装形状
ROUND
封装形式
LONG FORM
峰值回流温度(摄氏度)
NOT SPECIFIED
极性
UNIDIRECTIONAL
最大功率耗散
3 W
标称参考电压
22 V
表面贴装
NO
技术
ZENER
端子形式
WIRE
端子位置
AXIAL
处于峰值回流温度下的最长时间
NOT SPECIFIED
最大电压容差
5%
工作测试电流
34 mA
Base Number Matches
1
文档预览
3EZ6.8~3EZ51
SILICON ZENER DIODES
VOLTAGE
FEATURES
• Low profile package
• Built-in strain relief
• Low inductance
• Plastic package has Underwriters Laboratory Flammability
Classification 94V-O
• High temperature soldering : 260°C /10 seconds at terminals
.300(7.6)
.230(5.8)
1.0(25.4)MIN.
6.8 to 51 Volts
POWER
3.0 Watts
DO-15
Unit: inch(mm)
.034(.86)
.028(.71)
• In compliance with EU RoHS 2002/95/EC directives
MECHANICAL DATA
• Case: JEDEC DO-15, Molded plastic
• Terminals: Solder plated, solderable per MIL-STD-750, Method 2026
• Polarity: Color band denotes positive end (cathode)
• Standard packing: 52mm tape
• Weight: 0.014 ounce, 0.0397 gram
.140(3.6)
1.0(25.4)MIN.
.104(2.6)
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
Parameter
Peak Pulse Power Dissipation on T
L
=50
O
C (Notes A)
Derate above 50
O
C
Peak Forward Surge Current 8.3ms single half sine-wave
superimposed on rated load (JEDEC method)
Operating Junction and Storage Temperature Range
Symbol
Value
3.0
Units
W atts
P
D
I
FSM
T
J
,T
STG
15
-55 to + 150
Amps
O
C
NOTES:
A.Mounted on 5.0mm2 (.013mm thick) land areas.
B.Measured on8.3ms, and single half sine-wave or equivalent square wave ,duty cycle=4 pulses per minute maximum
STAD-FEB.10.2009
1
PAGE . 1
3EZ6.8~3EZ51
N o m i na l Ze ne r V o l t a g e
Part
Number
No m. V
3.0 Watt ZENER
3EZ6.8
3EZ7.5
3EZ8.2
3EZ8.7
3EZ9.1
3EZ10
3EZ11
3EZ12
3EZ13
3EZ14
3EZ15
3EZ16
3EZ17
3EZ18
3EZ19
3EZ20
3EZ22
3EZ24
3EZ25
3EZ27
3EZ28
3EZ30
3EZ33
3EZ36
3EZ39
3EZ43
3EZ47
3EZ51
6.8
7.5
8.2
8.7
9.1
10
11
12
13
14
15
16
17
18
19
20
22
24
25
27
28
30
33
36
39
43
47
51
6.46
7.13
7.79
8.27
8.65
9.5
10.45
11.4
12.35
13.3
14.25
15.2
16.15
17.1
18.05
19
20.9
22.8
23.75
25.65
26.6
28.5
31.35
34.2
37.05
40.85
44.65
48.45
7.14
7.88
8.61
9.14
9.56
10.5
11.55
12.6
13.65
14.7
15.75
16.8
17.85
18.9
19.95
21
23.1
25.2
26.25
28.35
29.4
31.5
34.65
37.8
40.95
45.15
49.35
53.55
2
2
2
2
3
4
4
5
5
5
6
6
6
6
7
7
8
9
10
10
12
16
20
22
28
33
38
45
V
Z
@ I
ZT
M i n. V
M a x. V
Z
ZT
@ I
ZT
M a x i m u m Z e n e r Im p e d a n c e
I
ZT
mA
Z
ZK
@ I
ZK
I
ZK
mA
Max Reverse
Leakage Current
I
R
@V
R
µA
V
Marking
C ode
110
100
91
85
82
75
68
63
58
53
50
47
44
42
40
37
34
31
30
28
27
25
23
21
19
17
16
15
700
700
700
700
700
700
700
700
700
700
700
700
750
750
750
750
750
750
750
750
750
1000
1000
1000
1000
1500
1500
1500
1
0.5
0.5
0.5
0.5
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
5
5
5
4
3
3
1
1
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
4
5
6
6.6
7
7.6
8.4
9.1
9.9
10.6
11.4
12.2
13
13.7
14.4
15.2
16.7
18.2
19
20.6
21.3
22.5
25.1
27.4
29.7
32.7
35.8
38.8
3EZ6.8
3EZ7.5
3EZ8.2
3EZ8.7
3EZ9.1
3EZ10
3EZ11
3EZ12
3EZ13
3EZ14
3EZ15
3EZ16
3EZ17
3EZ18
3EZ19
3EZ20
3EZ22
3EZ24
3EZ25
3EZ27
3EZ28
3EZ30
3EZ33
3EZ36
3EZ39
3EZ43
3EZ47
3EZ51
STAD-FEB.10.2009
1
PAGE . 2
3EZ6.8~3EZ51
5
500
P
D
, Maximum Power Dissipation (Watts)
P
PK
, PEAK SURGE POWER (WATTS)
4
250
100
100
50
25
15
10
5
0.1 0.20.3 0.5
3
RECTAN GULAR
NON - REPETIT IVE
T
J
=25
O
C PRIOR
TOINTIA L PULSE
2
1
0
0
20
40
60
80
100
120
O
140
160
180
1
2 3
5
10 20 30 50
100
T , Lead Temperature ( C)
L
P.W.PULSE WIDTH(ms)
Fig.1 Power Temperature Derating Curve
FIGURE 2. MAXIMUM SURGE POWER
FIGURE 3. TYPICAL THERMAL RESPONSEL,
APPLICATION NOTE:
Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determinejunction
temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended:
Lead Temperature, T
L
, should be determined from:
T
L
=
q
L
A
P
D
+ T
A
O
q
L
A
is the lead-to-ambient thermal resistance ( C/W) and Pd is the power dissipation. The value for
q
L
A
will vary and depends
O
on the device mounting method.
q
L
A
is generally 30-40 C/W for the various clips and tie points in common use and for printed
circuit board wiring.
The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point.
The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges
generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of
TL, the junction temperature may be determined by:
T
J
= T
L
+
D
T
JL
D
T
JL
is the increase in junction temperature above the lead temperature and may be found from Figure 3 for a train of power pulses
or from Figure 10 for dc power.
D
T
JL
=
q
J
L
P
D
For worst-case design, using expected limits of I
Z
, limits of P
D
and the extremes of T
J
(
D
T
J
) may be estimated. Changes in voltage,
V
Z
, can then be found from:
D
V =
q
V
D
Z
T
J
q
V
Z
, the zener voltage temperature coefficient, is found from Figures 5 and 6.
Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance.
For best regulation, keep current excursions as low as possible.
Data of Figure 3 should not be used to compute surge capa-bility. Surge limitations are given in Figure 2. They are lower than would
be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small
spots resulting in device degradation should the limits of Figure 2 be exceeded.
STAD-FEB.10.2009
1
PAGE . 3
3EZ6.8~3EZ51
O
V
Z
, JUNCTION - LEAD THERMAL RESISTANCE ( C/W)
80
70
60
50
40
30
20
10
0
0
1/8
4/1
3/8
PRIMARY PATH OF
CONEUCTION IS THROUGH
THE CATHODE LEAD
1/2
5/8
3/4
7/8
1
L, LEAD LENGTH TO HEAT SINK (INCH)
q
FIGURE 4. TYPLCAL THERMAL RESISTANCE
STAD-FEB.10.2009
1
PAGE . 4
查看更多>
请问硬盘是如何确定磁头在盘面哪个位置的?
硬盘盘面是由电机驱动的磁头是由磁臂通过音圈电机驱动的那么问题来了硬盘是通过什么来确定当前磁头在哪个磁道(磁臂的角度)和磁道的那个扇区(主轴电机的转动角度)的?请问硬盘是如何确定磁头在盘面哪个位置的? 哈哈这个问题有点深,其实硬盘磁道跟BIN文件一样的,每个个扇区都有一个标识符的,而寻址并不是直接定位到,是通过算法计算现在读取到的扇区标识符与需要寻址的标识符差距,不停的调整磁头直到找到正确的扇区,有点pid算法找平衡点的感觉,所以当前所在的扇区只要读取扇区标识符就行了。靠磁道+扇区来...
littleshrimp 综合技术交流
09.05【每周讨论】关于STM8中断的开启
最近写了一个STM8的程序,挺简单的一个程序。里面开启了一个串口接收中断和一个定时器中断。多次调试发现,串口也接收到了数据,相关状态寄存器也正确而且调试也确定STM8接收中断打开了。但是程序就是不进中断,纠结之余才发现,原因就是:没有加上_asm(\"rim\");只有这条语句调用之后才能真正打开中断。我想请问一下是否有哪个状态寄存器对这个有指示啊,能通过仿真查看寄存器的状态找出来吗? 09.05【每周讨论】关于STM8中断的开启一定有否则就不叫开发坏境,只不过这个开发环境用的...
longxtianya 综合技术交流
芯币竞价全新回归 抱回惊喜迎接新年
为感谢这一年来大家对论坛的支持,从本周开始连续四周,我们将放置一些重量级礼品供大家用部分RMB+芯币或单独芯币的方式进行竞价这次参与竞价的是RIGOL1102U数字示波器恭喜89楼chenzhufly以800元+20000芯币拍得此示波器,本周内将会按照论坛个人资料中的地址寄出,请注意查收。产品特性:提供2个模拟通道,最高50MHz或100MHz带宽,1GSa/s实时采样率及25GSa/s等效采样率5.6...
eric_wang 综合技术交流
【转帖】分析电路的四大常用方法
电子电路图用来表示实际电子电路的组成、结构、元器件标称值等信息。通过电路图可以知道实际电路的情况。这样我们在分析电路时,就不必把实物翻来覆去地琢磨,而只要拿着一张图纸就可以了。在设计电路时,也可以从容地纸上或电脑上进行,确认完善后再进行实际安装,通过调试、改进,直至成功。我们更可以应用先进的计算机软件来进行电路的辅助设计,甚至进行虚拟的电路实验,大大提高工作效率。给大家总结了四大常用的分析电路的方法,以及每种方法适合的电路类型和分析步骤。1、时间常数分析法时间常数...
Ameya360皇华 综合技术交流
从历史聊软件架构(一)
世界上第一台电子数字计算机ENIAC(埃尼阿克)(TheElectronicNumericalIntegratorAndCalculator)诞生在1946年2月。从此人类社会进入到信息时代。电子计算机的出现突破了人类许多计算任务的极限。例如:人类花费几十年计算的圆周率数值,计算机几十秒钟就完成了。而且还不会出错。计算机不只在计算领域应用,而且也广泛的用于自动控制、信息处理等等领域。电子数字计算机是与蒸汽机、电报同样伟大的发明。这些发明都开启了一个人类社会时代。第一代计算机是使用...
bigbat 综合技术交流