首页 > 器件类别 > 分立半导体 > 二极管

3EZ39

39 V, 3 W, SILICON, UNIDIRECTIONAL VOLTAGE REGULATOR DIODE, DO-15

器件类别:分立半导体    二极管   

厂商名称:强茂(PANJIT)

厂商官网:http://www.panjit.com.tw/

器件标准:

下载文档
3EZ39 在线购买

供应商:

器件:3EZ39

价格:-

最低购买:-

库存:点击查看

点击购买

器件参数
参数名称
属性值
是否无铅
不含铅
是否Rohs认证
符合
零件包装代码
DO-15
包装说明
O-PALF-W2
针数
2
Reach Compliance Code
_compli
ECCN代码
EAR99
外壳连接
ISOLATED
配置
SINGLE
二极管元件材料
SILICON
二极管类型
ZENER DIODE
最大动态阻抗
28 Ω
JEDEC-95代码
DO-15
JESD-30 代码
O-PALF-W2
元件数量
1
端子数量
2
最高工作温度
150 °C
最低工作温度
-55 °C
封装主体材料
PLASTIC/EPOXY
封装形状
ROUND
封装形式
LONG FORM
峰值回流温度(摄氏度)
NOT SPECIFIED
极性
UNIDIRECTIONAL
最大功率耗散
3 W
标称参考电压
39 V
表面贴装
NO
技术
ZENER
端子形式
WIRE
端子位置
AXIAL
处于峰值回流温度下的最长时间
NOT SPECIFIED
最大电压容差
5%
工作测试电流
19 mA
Base Number Matches
1
文档预览
3EZ6.8~3EZ51
SILICON ZENER DIODES
VOLTAGE
FEATURES
• Low profile package
• Built-in strain relief
• Low inductance
• Plastic package has Underwriters Laboratory Flammability
Classification 94V-O
• High temperature soldering : 260°C /10 seconds at terminals
.300(7.6)
.230(5.8)
1.0(25.4)MIN.
6.8 to 51 Volts
POWER
3.0 Watts
DO-15
Unit: inch(mm)
.034(.86)
.028(.71)
• In compliance with EU RoHS 2002/95/EC directives
MECHANICAL DATA
• Case: JEDEC DO-15, Molded plastic
• Terminals: Solder plated, solderable per MIL-STD-750, Method 2026
• Polarity: Color band denotes positive end (cathode)
• Standard packing: 52mm tape
• Weight: 0.014 ounce, 0.0397 gram
.140(3.6)
1.0(25.4)MIN.
.104(2.6)
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
Parameter
Peak Pulse Power Dissipation on T
L
=50
O
C (Notes A)
Derate above 50
O
C
Peak Forward Surge Current 8.3ms single half sine-wave
superimposed on rated load (JEDEC method)
Operating Junction and Storage Temperature Range
Symbol
Value
3.0
Units
W atts
P
D
I
FSM
T
J
,T
STG
15
-55 to + 150
Amps
O
C
NOTES:
A.Mounted on 5.0mm2 (.013mm thick) land areas.
B.Measured on8.3ms, and single half sine-wave or equivalent square wave ,duty cycle=4 pulses per minute maximum
STAD-FEB.10.2009
1
PAGE . 1
3EZ6.8~3EZ51
N o m i na l Ze ne r V o l t a g e
Part
Number
No m. V
3.0 Watt ZENER
3EZ6.8
3EZ7.5
3EZ8.2
3EZ8.7
3EZ9.1
3EZ10
3EZ11
3EZ12
3EZ13
3EZ14
3EZ15
3EZ16
3EZ17
3EZ18
3EZ19
3EZ20
3EZ22
3EZ24
3EZ25
3EZ27
3EZ28
3EZ30
3EZ33
3EZ36
3EZ39
3EZ43
3EZ47
3EZ51
6.8
7.5
8.2
8.7
9.1
10
11
12
13
14
15
16
17
18
19
20
22
24
25
27
28
30
33
36
39
43
47
51
6.46
7.13
7.79
8.27
8.65
9.5
10.45
11.4
12.35
13.3
14.25
15.2
16.15
17.1
18.05
19
20.9
22.8
23.75
25.65
26.6
28.5
31.35
34.2
37.05
40.85
44.65
48.45
7.14
7.88
8.61
9.14
9.56
10.5
11.55
12.6
13.65
14.7
15.75
16.8
17.85
18.9
19.95
21
23.1
25.2
26.25
28.35
29.4
31.5
34.65
37.8
40.95
45.15
49.35
53.55
2
2
2
2
3
4
4
5
5
5
6
6
6
6
7
7
8
9
10
10
12
16
20
22
28
33
38
45
V
Z
@ I
ZT
M i n. V
M a x. V
Z
ZT
@ I
ZT
M a x i m u m Z e n e r Im p e d a n c e
I
ZT
mA
Z
ZK
@ I
ZK
I
ZK
mA
Max Reverse
Leakage Current
I
R
@V
R
µA
V
Marking
C ode
110
100
91
85
82
75
68
63
58
53
50
47
44
42
40
37
34
31
30
28
27
25
23
21
19
17
16
15
700
700
700
700
700
700
700
700
700
700
700
700
750
750
750
750
750
750
750
750
750
1000
1000
1000
1000
1500
1500
1500
1
0.5
0.5
0.5
0.5
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
5
5
5
4
3
3
1
1
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
4
5
6
6.6
7
7.6
8.4
9.1
9.9
10.6
11.4
12.2
13
13.7
14.4
15.2
16.7
18.2
19
20.6
21.3
22.5
25.1
27.4
29.7
32.7
35.8
38.8
3EZ6.8
3EZ7.5
3EZ8.2
3EZ8.7
3EZ9.1
3EZ10
3EZ11
3EZ12
3EZ13
3EZ14
3EZ15
3EZ16
3EZ17
3EZ18
3EZ19
3EZ20
3EZ22
3EZ24
3EZ25
3EZ27
3EZ28
3EZ30
3EZ33
3EZ36
3EZ39
3EZ43
3EZ47
3EZ51
STAD-FEB.10.2009
1
PAGE . 2
3EZ6.8~3EZ51
5
500
P
D
, Maximum Power Dissipation (Watts)
P
PK
, PEAK SURGE POWER (WATTS)
4
250
100
100
50
25
15
10
5
0.1 0.20.3 0.5
3
RECTAN GULAR
NON - REPETIT IVE
T
J
=25
O
C PRIOR
TOINTIA L PULSE
2
1
0
0
20
40
60
80
100
120
O
140
160
180
1
2 3
5
10 20 30 50
100
T , Lead Temperature ( C)
L
P.W.PULSE WIDTH(ms)
Fig.1 Power Temperature Derating Curve
FIGURE 2. MAXIMUM SURGE POWER
FIGURE 3. TYPICAL THERMAL RESPONSEL,
APPLICATION NOTE:
Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determinejunction
temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended:
Lead Temperature, T
L
, should be determined from:
T
L
=
q
L
A
P
D
+ T
A
O
q
L
A
is the lead-to-ambient thermal resistance ( C/W) and Pd is the power dissipation. The value for
q
L
A
will vary and depends
O
on the device mounting method.
q
L
A
is generally 30-40 C/W for the various clips and tie points in common use and for printed
circuit board wiring.
The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point.
The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges
generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of
TL, the junction temperature may be determined by:
T
J
= T
L
+
D
T
JL
D
T
JL
is the increase in junction temperature above the lead temperature and may be found from Figure 3 for a train of power pulses
or from Figure 10 for dc power.
D
T
JL
=
q
J
L
P
D
For worst-case design, using expected limits of I
Z
, limits of P
D
and the extremes of T
J
(
D
T
J
) may be estimated. Changes in voltage,
V
Z
, can then be found from:
D
V =
q
V
D
Z
T
J
q
V
Z
, the zener voltage temperature coefficient, is found from Figures 5 and 6.
Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance.
For best regulation, keep current excursions as low as possible.
Data of Figure 3 should not be used to compute surge capa-bility. Surge limitations are given in Figure 2. They are lower than would
be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small
spots resulting in device degradation should the limits of Figure 2 be exceeded.
STAD-FEB.10.2009
1
PAGE . 3
3EZ6.8~3EZ51
O
V
Z
, JUNCTION - LEAD THERMAL RESISTANCE ( C/W)
80
70
60
50
40
30
20
10
0
0
1/8
4/1
3/8
PRIMARY PATH OF
CONEUCTION IS THROUGH
THE CATHODE LEAD
1/2
5/8
3/4
7/8
1
L, LEAD LENGTH TO HEAT SINK (INCH)
q
FIGURE 4. TYPLCAL THERMAL RESISTANCE
STAD-FEB.10.2009
1
PAGE . 4
查看更多>
液晶模块的操作注意事项及储存条件
此内容由EEWORLD论坛网友罗姆液晶技术站原创,如需转载或用于商业用途需征得作者同意并注明出处液晶显示模块就是将液晶显示器件、驱动芯片、控制器和PCB线路板组装在一起。它是可以直接和机器连接在一起使用的。这类模块在使用和安装时一般有以下几点注意事项:...
罗姆液晶技术站 综合技术交流
Journal of Electromagnetic Analysis and Applications (Vol.03 No.06, Jun. 2011)
JournalofElectromagneticAnalysisandApplicationsISSN:1942-0730(Print)1942-0749(Online).JEMAAfreeonlineaccess:www.scirp.org/journal/jemaa.TableofContents(Vol.03No.06,Jun.2011):SF6ByproductsinHigh-HumidityEnvironmen...
liurong123 综合技术交流
TVS管阵列厂家
TVS管阵列有哪些厂家做得比较好?TVS管阵列厂家看什么用途了吧以前单位用的君耀的TVS管,TVS管阵列好像也是他们的吧,记不清了,性价比还可以嗯我去看一下常规的TVS二极管如P4KE、P6KE、1.5KE、SMAJ、SMBJ、SMCJ系列制造商有LRC、MCC、江苏长电、济南晶恒、山东鲁光等TVS二极管阵列产品厂商:littlefuse、Bourns、SEMTECH、ON、PROTEK、PANJIT嗯已经找到了...
bluestar09 综合技术交流
降低数据丢失对NAND Flash寿命的影响
数据在NANDFlash中以电荷的形式存储。数据的表示以所存储电荷的电压是否超过一个特定的阈值实现,因此NandFlash存储介质对电荷微小的差异非常敏感。微小的变化可能改变单元的含义-这种情况称之为位错误。虽然其中一个或多个位错误可以纠正,但超过阈值的位错误导致数据丢失。数据丢失是如何发生的,如何通过Flash介质驱动和文件系统技术预防?这些技术的使用对介质寿命的影响?我们来了解一下。#背景#NANDFlash使用电荷来长期存储1和0...
MamoYU 综合技术交流
苹果市值已破万亿 但华尔街预测还将继续上涨
 科技讯北京时间8月4日上午音讯,苹果股价周五小幅上涨,但其市值依然与一天前刚刚打破的1万亿美圆大关十分接近。不过,华尔街剖析师估计,该股还有更大上涨空间。  在周四成为美国首家市值打破1万亿美圆的上市公司后,苹果周二微涨0.29%,报收于207.99美圆,盘中最低为205.48美圆,最高位208.74美圆,盘绕207.0425美圆的1万亿美圆市值关口上下动摇。  亚特兰大SynovusTrust投资组合经理丹尼尔·摩根(DanielMorgan)以为,苹果股...
tlyl18108837711 综合技术交流
RK3288资料
RK3288参考原理图资料RK3288资料挺好的资料,有PCB就更好了下载了,谢谢,...
弦上的舞 综合技术交流