首页 > 器件类别 > 分立半导体 > 二极管

3EZ7.5

7.5 V, 3 W, SILICON, UNIDIRECTIONAL VOLTAGE REGULATOR DIODE, DO-15

器件类别:分立半导体    二极管   

厂商名称:强茂(PANJIT)

厂商官网:http://www.panjit.com.tw/

器件标准:

下载文档
器件参数
参数名称
属性值
是否无铅
不含铅
是否Rohs认证
符合
零件包装代码
DO-15
包装说明
O-PALF-W2
针数
2
Reach Compliance Code
_compli
ECCN代码
EAR99
外壳连接
ISOLATED
配置
SINGLE
二极管元件材料
SILICON
二极管类型
ZENER DIODE
JEDEC-95代码
DO-15
JESD-30 代码
O-PALF-W2
元件数量
1
端子数量
2
最高工作温度
150 °C
最低工作温度
-55 °C
封装主体材料
PLASTIC/EPOXY
封装形状
ROUND
封装形式
LONG FORM
峰值回流温度(摄氏度)
NOT SPECIFIED
极性
UNIDIRECTIONAL
最大功率耗散
3 W
认证状态
Not Qualified
标称参考电压
7.5 V
表面贴装
NO
技术
ZENER
端子形式
WIRE
端子位置
AXIAL
处于峰值回流温度下的最长时间
NOT SPECIFIED
最大电压容差
5%
Base Number Matches
1
文档预览
3EZ6.8~3EZ51
SILICON ZENER DIODES
VOLTAGE
FEATURES
• Low profile package
• Built-in strain relief
• Low inductance
• Plastic package has Underwriters Laboratory Flammability
Classification 94V-O
• High temperature soldering : 260°C /10 seconds at terminals
.300(7.6)
.230(5.8)
1.0(25.4)MIN.
6.8 to 51 Volts
POWER
3.0 Watts
DO-15
Unit: inch(mm)
.034(.86)
.028(.71)
• In compliance with EU RoHS 2002/95/EC directives
MECHANICAL DATA
• Case: JEDEC DO-15, Molded plastic
• Terminals: Solder plated, solderable per MIL-STD-750, Method 2026
• Polarity: Color band denotes positive end (cathode)
• Standard packing: 52mm tape
• Weight: 0.014 ounce, 0.0397 gram
.140(3.6)
1.0(25.4)MIN.
.104(2.6)
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
Parameter
Peak Pulse Power Dissipation on T
L
=50
O
C (Notes A)
Derate above 50
O
C
Peak Forward Surge Current 8.3ms single half sine-wave
superimposed on rated load (JEDEC method)
Operating Junction and Storage Temperature Range
Symbol
Value
3.0
Units
W atts
P
D
I
FSM
T
J
,T
STG
15
-55 to + 150
Amps
O
C
NOTES:
A.Mounted on 5.0mm2 (.013mm thick) land areas.
B.Measured on8.3ms, and single half sine-wave or equivalent square wave ,duty cycle=4 pulses per minute maximum
STAD-FEB.10.2009
1
PAGE . 1
3EZ6.8~3EZ51
N o m i na l Ze ne r V o l t a g e
Part
Number
No m. V
3.0 Watt ZENER
3EZ6.8
3EZ7.5
3EZ8.2
3EZ8.7
3EZ9.1
3EZ10
3EZ11
3EZ12
3EZ13
3EZ14
3EZ15
3EZ16
3EZ17
3EZ18
3EZ19
3EZ20
3EZ22
3EZ24
3EZ25
3EZ27
3EZ28
3EZ30
3EZ33
3EZ36
3EZ39
3EZ43
3EZ47
3EZ51
6.8
7.5
8.2
8.7
9.1
10
11
12
13
14
15
16
17
18
19
20
22
24
25
27
28
30
33
36
39
43
47
51
6.46
7.13
7.79
8.27
8.65
9.5
10.45
11.4
12.35
13.3
14.25
15.2
16.15
17.1
18.05
19
20.9
22.8
23.75
25.65
26.6
28.5
31.35
34.2
37.05
40.85
44.65
48.45
7.14
7.88
8.61
9.14
9.56
10.5
11.55
12.6
13.65
14.7
15.75
16.8
17.85
18.9
19.95
21
23.1
25.2
26.25
28.35
29.4
31.5
34.65
37.8
40.95
45.15
49.35
53.55
2
2
2
2
3
4
4
5
5
5
6
6
6
6
7
7
8
9
10
10
12
16
20
22
28
33
38
45
V
Z
@ I
ZT
M i n. V
M a x. V
Z
ZT
@ I
ZT
M a x i m u m Z e n e r Im p e d a n c e
I
ZT
mA
Z
ZK
@ I
ZK
I
ZK
mA
Max Reverse
Leakage Current
I
R
@V
R
µA
V
Marking
C ode
110
100
91
85
82
75
68
63
58
53
50
47
44
42
40
37
34
31
30
28
27
25
23
21
19
17
16
15
700
700
700
700
700
700
700
700
700
700
700
700
750
750
750
750
750
750
750
750
750
1000
1000
1000
1000
1500
1500
1500
1
0.5
0.5
0.5
0.5
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
5
5
5
4
3
3
1
1
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
4
5
6
6.6
7
7.6
8.4
9.1
9.9
10.6
11.4
12.2
13
13.7
14.4
15.2
16.7
18.2
19
20.6
21.3
22.5
25.1
27.4
29.7
32.7
35.8
38.8
3EZ6.8
3EZ7.5
3EZ8.2
3EZ8.7
3EZ9.1
3EZ10
3EZ11
3EZ12
3EZ13
3EZ14
3EZ15
3EZ16
3EZ17
3EZ18
3EZ19
3EZ20
3EZ22
3EZ24
3EZ25
3EZ27
3EZ28
3EZ30
3EZ33
3EZ36
3EZ39
3EZ43
3EZ47
3EZ51
STAD-FEB.10.2009
1
PAGE . 2
3EZ6.8~3EZ51
5
500
P
D
, Maximum Power Dissipation (Watts)
P
PK
, PEAK SURGE POWER (WATTS)
4
250
100
100
50
25
15
10
5
0.1 0.20.3 0.5
3
RECTAN GULAR
NON - REPETIT IVE
T
J
=25
O
C PRIOR
TOINTIA L PULSE
2
1
0
0
20
40
60
80
100
120
O
140
160
180
1
2 3
5
10 20 30 50
100
T , Lead Temperature ( C)
L
P.W.PULSE WIDTH(ms)
Fig.1 Power Temperature Derating Curve
FIGURE 2. MAXIMUM SURGE POWER
FIGURE 3. TYPICAL THERMAL RESPONSEL,
APPLICATION NOTE:
Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determinejunction
temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended:
Lead Temperature, T
L
, should be determined from:
T
L
=
q
L
A
P
D
+ T
A
O
q
L
A
is the lead-to-ambient thermal resistance ( C/W) and Pd is the power dissipation. The value for
q
L
A
will vary and depends
O
on the device mounting method.
q
L
A
is generally 30-40 C/W for the various clips and tie points in common use and for printed
circuit board wiring.
The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point.
The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges
generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of
TL, the junction temperature may be determined by:
T
J
= T
L
+
D
T
JL
D
T
JL
is the increase in junction temperature above the lead temperature and may be found from Figure 3 for a train of power pulses
or from Figure 10 for dc power.
D
T
JL
=
q
J
L
P
D
For worst-case design, using expected limits of I
Z
, limits of P
D
and the extremes of T
J
(
D
T
J
) may be estimated. Changes in voltage,
V
Z
, can then be found from:
D
V =
q
V
D
Z
T
J
q
V
Z
, the zener voltage temperature coefficient, is found from Figures 5 and 6.
Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance.
For best regulation, keep current excursions as low as possible.
Data of Figure 3 should not be used to compute surge capa-bility. Surge limitations are given in Figure 2. They are lower than would
be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small
spots resulting in device degradation should the limits of Figure 2 be exceeded.
STAD-FEB.10.2009
1
PAGE . 3
3EZ6.8~3EZ51
O
V
Z
, JUNCTION - LEAD THERMAL RESISTANCE ( C/W)
80
70
60
50
40
30
20
10
0
0
1/8
4/1
3/8
PRIMARY PATH OF
CONEUCTION IS THROUGH
THE CATHODE LEAD
1/2
5/8
3/4
7/8
1
L, LEAD LENGTH TO HEAT SINK (INCH)
q
FIGURE 4. TYPLCAL THERMAL RESISTANCE
STAD-FEB.10.2009
1
PAGE . 4
查看更多>
请问下下面的图片的元器件是什么?
就是照片里面褐色的元器件是什么元件?请问下下面的图片的元器件是什么?能标注为F的能是什么呢F一般是保险丝吧!搜了一下还真有!直插方形保险丝T5A5A250V粽色方型8*4这个是网址:http://s.etao.com/detail/44911805750.html保险丝直插方形保险丝T5A5A250V。。哦哦谢谢,我真傻了,竟然是保险丝,第一次见这种形状的...
stm32f103vct6 综合技术交流
电赛准备做四轴飞行器 瑞萨的那款单片机最好 希望各位大神推荐一下 谢谢!
今年电子设计大赛是瑞萨杯我准备做飞行器现在我用的是瑞萨R5F100LEA感觉不太好想问各位大神用没有更加高级的单片机最好是做过飞行器的大神。。希望能够给我一些好的建议。谢谢!电赛准备做四轴飞行器瑞萨的那款单片机最好希望各位大神推荐一下谢谢!本主题需向作者支付1枚芯币才能浏览!!!这是来求助的吗?额不好意思弄错了看到二楼,好逗啊你们大赛允许换MCU么?13年也参加过,不过是做的电源题。旁边有一组做的飞机,后来好像大赛的时候,好像没有强制要求用瑞...
wakakahaha 综合技术交流
电路识图2-模拟电路的识图方法
(特别说明:本文所配图片仅为模拟电路电路图,图片位置与相应位置出的文字并无对应关系,敬请谅解!)一、识图要点1、电路组成模拟电路图都是由各种元器件图形符号和文字符号做成的,如电阻器,电容器,电感器,晶体管,集成电路等元器件。要看懂一个电气设备的电子电路图,首先要了解图中使用了那些电子元器件,这些元器件的结构、功能、特性是什么。电路图中用的最多的是晶体管和集成电路,因此要了解晶体管的输入、输出特性以及工作在放大区、截止区和饱和区的条件,集成电路芯片的引脚及功能等。还应了解一些...
tiankai001 综合技术交流
实习生自荐,大三,所学所会在此,希望前辈们拍砖指导
我的大学在电子这行是非常不起眼的大学,专业为电子信息科学与技术,我是三本,四级还没过,学习成绩仅仅是不挂科,以这些看人的公司可以直接pass在校简历:2010.08校电子大赛,校级一等奖2011.06-至今电子创新实验室负责人2011.09全国大学生电子设计大赛,国家级二等奖2011.10校知识产权杯,校级一等奖2011.11学院十佳个人之“最佳科技创新”2012.03...
yrloy 综合技术交流
求电子竞赛电源设计
求电子竞赛电源设计搞清楚输入输出电压和电流要求,再根据需要决定采用开关电源还是线性电源,进而进行器件选型,然后看器件手册,如果你学过电子技术基础课程且没有把上课学的东西还给老师,下来该怎么做不是难事了。...
zxllove23 综合技术交流