首页 > 器件类别 > 分立半导体 > 二极管

5.0SMDJ58CA

Trans Voltage Suppressor Diode,

器件类别:分立半导体    二极管   

厂商名称:台湾光宝(LITEON)

厂商官网:http://optoelectronics.liteon.com/en-global/Home/index

器件标准:

下载文档
器件参数
参数名称
属性值
是否Rohs认证
符合
厂商名称
台湾光宝(LITEON)
Reach Compliance Code
compliant
二极管类型
TRANS VOLTAGE SUPPRESSOR DIODE
峰值回流温度(摄氏度)
NOT SPECIFIED
处于峰值回流温度下的最长时间
NOT SPECIFIED
Base Number Matches
1
文档预览
5.0SMDJ SERIES
GLASS PASSIVATED
UNIDIRECTIONAL AND BIDIRECTIONAL
TRANSIENT VOLTAGE SUPPRESSORS
REVERSE VOLTAGE - 12 to 100 V
POWER DISSIPATION - 5000 W
FEATURES
SMC
For surface mounted applications
Reliable low cost construction utilizing molded plastic
technique
Plastic material has UL flammability classification 94V-O
Fast response time: typically less than 1.0ns
RoHS compliant
Qualified to AEC-Q101 Rev_C
MECHANICAL DATA
Case : Molded plastic
Polarity : by cathode band denotes uni-directional device
none cathode band denotes bi-directional device
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
ABSOLUTE RATINGS
PARAMETER
SYMBOL
P
PP
(Note 2)
VALUE
5000
300
6.5
3.5
-55 to +150
-55 to +150
UNIT
W
A
W
V
°
C
°
C
Maximum Instantaneous forward voltage at 100A for unidirectional devices only (Note 3)
Operating junction temperature range
Storage temperature range
2. unidirectional units only.
3. VF max=3.5V at IF=100 A 300us square wave pulse.
NOTES : 1. Non-repetitive current pulse, per fig. 5 and derated above TA= 25
Steady State Power Dissipation at TL =75
(on infinite heatsink)
Peak Forward Surge Current 8.3ms single half sine-wave @ TJ = 25
Peak Power Dissipation at TA = 25
Ratings at 25
ambient temperature unless otherwise specified.
, TP = 1ms (Note 1)
I
FSM
P
M(AV)
V
F
T
J
T
STG
REV.0, AUG.-2017, KSID01
per fig.1.
RATING AND CHARACTERISTIC CURVES
5.0SMDJ SERIES
FIG.1- Pulse Derating Curve
100
300
FIG.2- Maximum Non-Repetitive Surge Current
Peak Pulse Derating in Percntage of Peak
Power or Current, (%)
75
Peak Forward Surge Current,(A)
250
50
200
25
150
8.3ms single half sine-wave
100
0
0
25
50
75
100
125
150
1
10
100
Ambient Temperature,TA (°C)
Number of Cycles at 60Hz
FIG.3- Steady State Power Derating Curve
8
7
100
FIG.4- Peak Pulse Power Rating Curve
Steady State Power Dissipation, (W)
6
5
4
3
2
1
0
0
25
50
75
100
125
150
Peak Power, (kW)
10
1
0.1
0.1
1
10
100
1000
10000
Lead Temperature,TL (°C)
Pulse Width,td (us)
FIG.5- Typical Junction Capacitance
10000
FIG.6- Pulse Waveform
120
100
90
Peak Value (Ipp)
Junction Capacitance,Cj (pF)
1000
Peak Pulse Current, (%)
80
70
60
50
40
30
100
Bi-directional
@zero bias
Half Value= Ipp/2
10
Tj=25
F=1MHz
1
1
10
100
1000
20
10
0
0
td
0.5
1
1.5
2
Reverse Breakdown Voltage,VBR (V)
Time,T (ms)
Uni-directional
@zero bias
110
Tr=10us
Tj=25
Pulse Width (td) is defined as the
point where the peak current decays
to 50% of Ipp
10/1000 usec. Waveform
As defined by R.E.A
2.5
3
3.5
4
5.0SMDJ SERIES
W orking
PeakReverse
Voltage
V
RW M
(Volts)
12
13
14
15
16
17
18
19
20
22
24
26
28
30
33
36
40
43
45
48
51
54
58
60
64
70
75
78
80
85
90
100
Min.
13.3
14.4
15.6
16.7
17.8
18.9
20.0
21.1
22.2
24.4
26.7
28.9
31.1
33.3
36.7
40.0
44.4
47.8
50.0
53.3
56.7
60.0
64.4
66.7
71.1
77.8
83.3
86.7
88.8
94.4
100.0
111.0
Maximum Reverse
Voltage at I
RSM
(Clamping Voltage)
V
RSM
(Volts)
19.9
21.5
23.2
24.4
26.0
27.6
29.2
30.8
32.4
35.5
38.9
42.1
45.4
48.4
53.3
58.1
64.5
69.4
72.7
77.4
82.4
87.1
93.6
96.8
103.0
113.0
121.0
126.0
129.6
137.0
146.0
162.0
Maximum Reverse
Surge Current
I
RSM
(Amps)
251.3
232.6
215.5
204.9
192.3
181.2
171.2
162.4
154.3
140.8
128.5
118.8
110.1
103.3
93.8
86.1
77.5
72.0
68.8
64.6
60.7
57.4
53.4
51.7
48.5
44.2
41.3
39.7
38.6
36.5
34.2
30.9
Maximum Reverse
Leakage at VRWM
IR (uA)
800
500
200
100
50
20
10
10
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
Type Number
Uni
5.0SMDJ12A
5.0SMDJ13A
5.0SMDJ14A
5.0SMDJ15A
5.0SMDJ16A
5.0SMDJ17A
5.0SMDJ18A
5.0SMDJ19A
5.0SMDJ20A
5.0SMDJ22A
5.0SMDJ24A
5.0SMDJ26A
5.0SMDJ28A
5.0SMDJ30A
5.0SMDJ33A
5.0SMDJ36A
5.0SMDJ40A
5.0SMDJ43A
5.0SMDJ45A
5.0SMDJ48A
5.0SMDJ51A
5.0SMDJ54A
5.0SMDJ58A
5.0SMDJ60A
5.0SMDJ64A
5.0SMDJ70A
5.0SMDJ75A
5.0SMDJ78A
5.0SMDJ80A
5.0SMDJ85A
5.0SMDJ90A
5.0SMDJ100A
Bi
5.0SMDJ12CA
5.0SMDJ13CA
5.0SMDJ14CA
5.0SMDJ15CA
5.0SMDJ16CA
5.0SMDJ17CA
5.0SMDJ18CA
5.0SMDJ19CA
5.0SMDJ20CA
5.0SMDJ22CA
5.0SMDJ24CA
5.0SMDJ26CA
5.0SMDJ28CA
5.0SMDJ30CA
5.0SMDJ33CA
5.0SMDJ36CA
5.0SMDJ40CA
5.0SMDJ43CA
5.0SMDJ45CA
5.0SMDJ48CA
5.0SMDJ51CA
5.0SMDJ54CA
5.0SMDJ58CA
5.0SMDJ60CA
5.0SMDJ64CA
5.0SMDJ70CA
5.0SMDJ75CA
5.0SMDJ78CA
5.0SMDJ80CA
5.0SMDJ85CA
5.0SMDJ90CA
5.0SMDJ100CA
Device
Marking code
Uni
5PDZ
5PEE
5PEG
5PEK
5PEM
5PEP
5PER
5PET
5PEV
5PEX
5PEZ
5PFE
5PFG
5PFK
5PFM
5PFP
5PFR
5PFT
5PFV
5PFX
5PFZ
5PGE
5PGG
5PGK
5PGM
5PGP
5PGR
5PGT
5PGB
5PGV
5PGX
5PGZ
Bi
5BDZ
5BEE
5BEG
5BEK
5BEM
5BEP
5BER
5BET
5BEV
5BEX
5BEZ
5BFE
5BFG
5BFK
5BFM
5BFP
5BFR
5BFT
5BFV
5BFX
5BFZ
5BGE
5BGG
5BGK
5BGM
5BGP
5BGR
5BGT
5BGB
5BGV
5BGX
5BGZ
Breakdowm voltage
VBR Volts
Max.
14.7
15.9
17.2
18.5
19.7
20.9
22.1
23.3
24.5
26.9
29.5
31.9
34.4
36.8
40.6
44.2
49.1
52.8
55.3
58.9
62.7
66.3
71.2
73.7
78.6
86.0
92.1
95.8
97.6
104.0
111.0
123.0
@IT( mA)
10
10
10
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
NOTE :
1. Suffix 'A ' denotes 5% tolerance device.
2. Add suffix 'C 'or ' CA ' after part number to specify Bi-directional devices.
3. The IR limit is double for Bi-Directional devices.
LEGAL DISCLAIMER NOTICE
5.0SMDJ SERIES
Important Notice and Disclaimer
LSC reserves the right to make changes to this document and its products and specifications
at any time without notice.Customers should obtain and confirm the latest product information
and specifications before final design, purchase or use.
LSC makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does LSC assume any liability for application assistance or
customer product design. LSC does not warrant or accept any liability with products which are
purchased or used for any unintended or unauthorized application.
No license is granted by implication or otherwise under any intellectual property rights of LSC.
LSC products are not authorized for use as critical components in life support devices or
systems without express written approval of LSC.
查看更多>
超低功耗和20年的运行时间已非新鲜话题
人们普遍认为,超低功耗和超长使用寿命的设计方案都是近期才出现的事,这些方案是由IC工艺和电池化学物质的改进促成的。但事实上,若干年前就有设计师使用“古老的”工具和技术开发出了低功耗/长寿命的解决方案。随着当今超低功耗技术的应用和功率超强的小型电池的出现,我们很容易计算出能量使用情况,推算出某产品及其原装电池在理论上有20年的使用寿命。家庭安装的智能电能表等具有超长寿命的设备颇受欢迎,因为电池更换需耗费极高的人力成本,而此类设备可解决这一难题。但是,我还想知道下述问题的答案:即使计算结果显示有...
azhiking 综合技术交流
这个电路里为什么要把2颗电容串联在一起?
我在TI的一款锂电池保护(电荷计)芯片手册里看到这样一个电路,他们把2颗100nF的电容串联在一起,像红框里那样。我应该是第一次看到这种画法,我不清楚他们为什么要这么画,因为我想不出使用2个电容串联的必要性。数据手册:这个电路里为什么要把2颗电容串联在一起?为了BOM中少一个元件,所以就用了现在的低压的电容,两个串在一起组成一个高压的电容感觉是为了保险吧害怕一个电容坏了短路串了两个,在想不出来其他原因找到了如图 学习了。感谢。 学到了,谢谢...
littleshrimp 综合技术交流
【转帖】电路故障分析与定位的常用方法
数字电路的故障类型较多,产生故障的原因也各有不同,因此排除故障的方法也不一样。当电路发生故障时,根据故障现象,通过检查、测量,分析故障产生的原因并确定故障的部位,找到发生故障的元器件的过程。一般比较简单的电路,其故障原因往往也比较简单,故障的分析与定位较容易;而较为复杂的电路,其故障往往也较为复杂,故障原因的分析与定位相对也就要困难一些。下面讨论电路故障分析与定位的常用方法。一、直接观察法所谓直接观察法是指不借助于任何的仪器设备,直接观察待查电路的表面来发现问题、寻找故障的方法,...
Ameya360皇华 综合技术交流
【转帖】防反接保护电路
1,通常情况下直流电源输入防反接保护电路是利用二极管的单向导电性来实现防反接保护。如下图1示:这种接法简单可靠,但当输入大电流的情况下功耗影响是非常大的。以输入电流额定值达到2A,如选用Onsemi的快速恢复二极管MUR3020PT,额定管压降为0.7V,那么功耗至少也要达到:Pd=2A×0.7V=1.4W,这样效率低,发热量大,要加散热器。2,另外还可以用二极管桥对输入做整流,这样电路就永远有正确的极性(图2)。这些方案的缺点是,二极管上的压降会消耗能量。输入电流为2A时...
Ameya360皇华 综合技术交流
TE 官微人工客服功能上线,可以与 TE 技术专家直接微信沟通了!
泰科电子(TEConnectivity,以下简称“TE”)的微信人工客服功能上线啦!所有与TE产品有关的问题,您都可以直接在微信上跟TE的技术专家直接对话啦!你需要了解的TE微信人工客服四大优势:1.利用微信您可以更便捷地享受TE的服务2.工作日8:30-17:30,TE客服都在微信上等着您3.交流方式任您选:文字、图片、视频、语音您随意4.TE客服经验丰富,各种问题来者不拒跟小编一起看看如何与TE的技术专家对话!第一步:...
EEWORLD社区 综合技术交流