首页 > 器件类别 > 电源/电源管理 > 电源电路

AME8500AEETCA46Z

Power Management Circuit, Fixed, +4.63VV

器件类别:电源/电源管理    电源电路   

厂商名称:安茂微电子(AME)

器件标准:

下载文档
器件参数
参数名称
属性值
是否Rohs认证
符合
厂商名称
安茂微电子(AME)
包装说明
, TO-236
Reach Compliance Code
compliant
可调阈值
NO
端子数量
3
最高工作温度
85 °C
最低工作温度
-40 °C
封装主体材料
PLASTIC/EPOXY
封装等效代码
TO-236
电源
1/5.5 V
认证状态
Not Qualified
最大供电电流 (Isup)
0.005 mA
表面贴装
YES
温度等级
INDUSTRIAL
阈值电压标称
+4.63V
文档预览
AME
AME8500
n
General Description
The AME8500 family allows the user to customize the
CPU reset function without any external components.
The user has a large choice of reset voltage thresholds,
reset time intervals, and output driver configurations, all
of which are preset at the factory. Each wafer is trimmed
to the customer's specifications.
These circuits monitor the power supply voltage of
µP
based systems. When the power supply voltage drops
below the voltage threshold a reset is asserted immedi-
ately (within an interval T
D1
). The reset remains asserted
after the supply voltage rises above the voltage threshold
for a time interval, T
D2
. The reset output may be either
active high (RESET) or active low (RESETB). The reset
output may be configured as either push/pull or open drain.
The state of the reset output is guaranteed to be correct
for supply voltages greater than 1V.
Space saving SOT23/TSOT-23 packages and
micropower quiescent current (<3.0µA) make this family
a natural for portable battery powered equipment.
µProcessor
Supervisory
n
Typical Operating Circuit
2
V
IN
*
V
IN
AME8500
RESET /
RESETB
GND
Processor
RESET
Input
GND
3
Note: * External pull-up resistor is required if open-
drain output is used. 10 kΩ is recommended.
n
Block Diagram
AME8500 with Push-Pull RESETB
n
Features
l
Small Packages: SOT-23/TSOT-23, SOT-89
l
Tight Voltage Threshold Tolerance ---±1.50%
l
Wide Temperature Range ------ -40
o
C to +85
o
C
l
Low Quiescent Current < 3.0µA
l
All AME's Lead Free Products Meet RoHS
standards
GND
Delay
V
IN
I1
R1
P1
RESETB
N1
R2
V
REF
n
Applications
l
Portable Electronics
l
Power Supplies
l
Computer Peripherals
l
Data Acquisition Systems
l
Applications using CPUs
l
Consumer Electronics
R2
GND
V
IN
AME8500 with Push-Pull RESET
R1
I1
P1
RESET
N1
Delay
V
REF
Rev.T.10
1
AME
AME8500
n
Block Diagram (contd.)
AME8500 with Open-Drain RESETB
V
IN
I1
V
IN
I1
µProcessor
Supervisory
AME8500 with Open-Drain RESET
R1
R1
RESETB
N1
GND
R2
Delay
Delay
RESET
N1
R2
GND
V
REF
V
REF
n
Pin Configuration
SOT-23/TSOT-23
Top View
3
SOT-23/TSOT-23
Top View
AME8500AEET
1. GND
2. Reset/ResetB
3
AME8500BEET
1. Reset/ResetB
2. GND
AME8500
3. IN
AME8500
3. IN
1
2
* Die Attach:
Non-Conductive Epoxy
1
2
* Die Attach:
Non-Conductive Epoxy
SOT-23/TSOT-23
Top View
3
SOT-25/TSOT-25
Top View
AME8500CEET
1. Reset/ResetB
2. IN
5
4
AME8500BEEV
1. Reset/ResetB
2. IN
AME8500
3. GND
AME8500
3. GND
4. N/C
5. N/C
1
2
1
2
3
* Die Attach:
Conductive Epoxy
2
* Die Attach:
Non-Conductive Epoxy
Rev.T.10
AME
AME8500
n
Pin Configuration (contd.)
SOT-89
Top View
AME8500AEFT
SOT-89
Top View
AME8500BEFT
µProcessor
Supervisory
AME8500
1. GND
2. IN(TAB)
3. Reset/ResetB
AME8500
1. Reset/ResetB
2. IN(TAB)
3. GND
1
2
3
* Die Attach:
Non-Conductive Epoxy
1
2
3
* Die Attach:
Non-Conductive Epoxy
SOT-89
Top View
AME8500CEFT
1. IN
2. GND(TAB)
3. Reset/ResetB
1
2
3
AME8500
* Die Attach:
Conductive Epoxy
n
Pin Description
Pin Name
GND
RESETB/RESET
Ground
This pin can be ordered as RESET or RESETB.
RESET is active high. RESETB is active low. It is also available with an
open drain or pushpull output.
Positive power supply.
A reset is asserted after this voltage drops below a predetermined level. After
V
IN
rises above that level the reset output remains asserted until the end of
the reset timeout period.
Pin Description
IN
Rev.T.10
3
AME
AME8500
n
Ordering Information
AME8500 x x x x x x xx x
Special Feature
V
IN
Threshold Voltage (V
TH
)
Reset Time (T
D2NOM
)
Output Driver Option
Number of Pins
Package Type
Operating Ambient Temperature Range
Pin Configuration
Operating
Ambient
Temperature
Range
Output Driver
Number
Option
of
Characteristic
Pins
of RESET or
RESETB Pin
T: 3
V: 5
A:
B:
C:
D:
Reset
Time
(T
D 2 N O M
)
V
I N
Threshold
Voltage (V
TH
)
µProcessor
Supervisory
Pin
Configuration
Package
Type
Special
Feature
A
(SOT-23)
(TSOT-23)
1. GND
E -40
O
C to +85
O
C
2. Reset/
ResetB
3. IN
1. Reset/
ResetB
2. GND
3. IN
1. Reset/
ResetB
2. IN
3. GND
1. GND
2. IN
3. Reset/
ResetB
1. Reset/
ResetB
2. IN
3. GND
1. IN
2. GND
3. Reset/
ResetB
1. Reset/
ResetB
2. IN
3. GND
4. N/C
5. N/C
E : SOT-2X
F: SOT-89
RESETB /PP A: 1.5 ms
RESETB /OD E: 150 ms
R E S E T / P P F: 2 1 0 m s
RESET/ OD
B
(SOT-23)
(TSOT-23)
(RESET = Active High)
(RESETB = Active Low)
(PP = Push pull out)
(OD = Open drain output )
C
(SOT-23)
(TSOT-23)
A
(SOT-89)
B
(SOT-89)
1 6 : V
TH
=
1 8 : V
TH
=
1 9 : V
TH
=
2 0 : V
TH
=
2 1 : V
TH
=
2 2 : V
TH
=
2 3 : V
TH
=
2 4 : V
TH
=
2 5 : V
TH
=
2 6 : V
TH
=
2 7 : V
TH
=
2 8 : V
TH
=
2 9 : V
TH
=
3 0 : V
TH
=
3 1 : V
TH
=
3 5 : V
TH
=
4 0 : V
TH
=
4 2 : V
TH
=
4 4 : V
TH
=
4 5 : V
TH
=
4 6 : V
TH
=
1.60V
1.80V
1.90V
2.00V
2.10V
2.20V
2.32V
2.40V
2.50V
2.63V
2.70V
2.80V
2.93V
3.00V
3.08V
3.50V
4.00V
4.20V
4.38V
4.50V
4.63V
L: Low profile
Y : Lead free &
Low profile
Z: Lead free
C
(SOT-89)
B
(SOT-25)
(TSOT-25)
4
Rev.T.10
AME
AME8500
n
Ordering Information
Part Number
AME8500AEETAA16
AME8500AEETAA16L
AME8500AEETAA16Z
AME8500AEETAA16Y
AME8500AEETAA21
AME8500AEETAA21L
AME8500AEETAA21Z
AME8500AEETAA21Y
AME8500AEETAE20
AME8500AEETAE20L
AME8500AEETAE20Z
AME8500AEETAE20Y
AME8500AEETAE21
AME8500AEETAE21L
AME8500AEETAE21Z
AME8500AEETAE21Y
AME8500AEETAE23
AME8500AEETAE23L
AME8500AEETAE23Z
AME8500AEETAE23Y
AME8500AEETAE26
AME8500AEETAE26L
AME8500AEETAE26Z
AME8500AEETAE26Y
AME8500AEETAE29
AME8500AEETAE29L
AME8500AEETAE29Z
AME8500AEETAE29Y
µProcessor
Supervisory
Marking*
BCHww
BCHww
BCHww
BCHww
ASVww
ASVww
ASVww
ASVww
AUAww
AUAww
AUAww
AUAww
AVGww
AVGww
AVGww
AVGww
BAUww
BAUww
BAUww
BAUww
ASJww
ASJww
ASJww
ASJww
ALYww
ALYww
ALYww
ALYww
Detect Voltage
1.60V
1.60V
1.60V
1.60V
2.10V
2.10V
2.10V
2.10V
2.00V
2.00V
2.00V
2.00V
2.10V
2.10V
2.10V
2.10V
2.32V
2.32V
2.32V
2.32V
2.63V
2.63V
2.63V
2.63V
2.93V
2.93V
2.93V
2.93V
Package
SOT-23
TSOT-23
SOT-23
TSOT-23
SOT-23
TSOT-23
SOT-23
TSOT-23
SOT-23
TSOT-23
SOT-23
TSOT-23
SOT-23
TSOT-23
SOT-23
TSOT-23
SOT-23
TSOT-23
SOT-23
TSOT-23
SOT-23
TSOT-23
SOT-23
TSOT-23
SOT-23
TSOT-23
SOT-23
TSOT-23
Operating Ambient
Temperature Range
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
- 40
o
C to +85
o
C
Note: ww represents the date code and pls refer to the Date Code Rule before the Package Dimension.
* A line on top of the first letter represents lead free plating such as BCH
Pls consult AME sales office or authorized Rep./Distributor for the availability of output voltage or package type.
Rev.T.10
5
查看更多>
电流互感器量测三相电使用请教?
买了一个交流电流互感器,比例是10A:5mA。想要去量测三相电的总功耗,问题如下:1.需要一个全波或半波整流,将量测到的交流电流转换成直流电流后,再将其用电阻转电压,透过放大电路输出给ADC读取。还是先将电流互感器出来的值,先放大在整流。然后再透过电阻转电压读ADC?以上设计方向是对的吗?2.最后三相的功耗计算是P=220Vor380V*每相电流?然后再将3组加起来得到总功耗?还是单相计算的值就是总功耗?电流互感器量测三相电使用请教?买了一个交流电流互感器,比例是10A:5m...
hau30729 电源技术
【转帖】分享一下代换IC技巧,让PCB电路设计更完美
在PCB电路设计中会遇到需要代换IC的时候,下面就来分享一下代换IC时的技巧,帮助设计师在PCB电路设计时能更完美。一、直接代换直接代换是指用其他IC不经任何改动而直接取代原来的IC,代换后不影响机器的主要性能与指标。其代换原则是:代换IC的功能、性能指标、封装形式、引脚用途、引脚序号和间隔等几方面均相同。其中IC的功能相同不仅指功能相同,还应注意逻辑极性相同,即输出输入电平极性、电压、电流幅度必须相同。性能指标是指IC的主要电参数(或主要特性曲线)、最大耗散功率、...
皇华Ameya360 电源技术
TPS40210升压电路发热问题
我做的电路是按照官网参考资料做的,是6V升到21V,输出20W。为何带满载后,TPS40210芯片发热很快,一会就到七八十度了。满载后输出电压不变,就是TPS40210发热很厉害,这样肯定不行啊,芯片会烧毁的。换了好多参数都不能解决,求助大神。。。TPS40210升压电路发热问题你芯片周围留散热区域了吗?要是没有留的话就加散热片吧?开关电源虽然不像线性电源那样,自身消耗的功率小,但是也是需要散热的,毕竟PWM波形不是很标准的,电压和电流会有一小段时间同时不为零,这个时候就会有功耗本帖最...
yyc321 电源技术
DC-DC 开关管 瞬态电流 由什么决定的?
假如降压型DC-DC要选择开关管,稳态的电流是500mA(经过LC滤波之后的电流),那么开关管的瞬态电流峰值怎样来计算呢?由什么因素决定呢?为什么会产生瞬态电流峰值?望高手指点一二,谢谢!DC-DC开关管瞬态电流由什么决定的?很多方面都有关系,主要由于功率开关管子可承受的电流(瞬态峰值),整流管峰值电流,开关频率,功率电感磁饱和特性,输出电容,封装,散热等因素相关为什么会产生瞬态电流呢,是因为开关导通的时候对LC充电的原因所以导致瞬间电流很大?回复沙发qwqwqw2088...
771235870 电源技术
电路中的T1 变压器怎么回事
这个电路中的T1变压器怎么回事,为什么这样连接?顺便问一下R5的作用电路中的T1变压器怎么回事这是一个自激半桥(推挽)输出开关电源,使用双极型大功率晶体管。图中三个红色框里面的三个绕组,是绕在同一个铁心上,注意其同名端。绿色框里面两个绕组,是主要的功率输出变压器T1-1这个绕组,只有一或者二圈。T1-2和T1-3绕组匝数相等,大约十几圈,方向相反。也就是说,两个功率三极管基极相位相反。 绿色框里面的变压器两个绕组,先不必管匝数比,只考虑相位。那么...
灞波儿奔 电源技术
EEWORLD大学堂----熟练掌握高压 MOSFET/IGBT 栅极驱动设计
作为一名DIY电子爱好者,好的资料与资源就是最好的良师,感谢。 ...
hi5 电源技术