DATA SHEET
BZX55-C SERIES
AXIAL LEAD ZENER DIODES
VOLTAGE
2.4 to 47 Volts
POWER
500 mWatts
DO-35
Unit: inch (mm)
FEATURES
• Planar Die construction
• 500mW Power Dissipation
• Ideally Suited for Automated Assembly Processes
• Both normal and Pb free product are available :
Normal : 80~95% Sn, 5~20% Pb
Pb free: 98.5% Sn above
.153(3.9)MAX.
1.02(26.0)MIN.
.020(0.52)TYP.
MECHANICAL DATA
• Terminals: Solderable per MIL-STD-202, Method 208
• Polarity: See Diagram Below
• Approx. Weight: 0.13 grams
• Mounting Position: Any
• Ordering information: Suffix :” -35” to order DO-35 Package
• Packing information
B
- 2K per Bulk box
T/R - 10K per 13" plastic Reel
T/B - 5K per horiz. tape & Ammo box
1.02(26.0)MIN.
• Case: Molded glass DO-35
.079(2.0)MAX.
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
(T
J
=25°C unless otherwise noted)
Parameter
Power Dissipation at Tamb = 25
Junction Temperature
Storage Temperature Range
Valid provided that leads at a distance of 8mm from case are kept at ambient temperature.
O
Symbol
Value
500
175
-65 to +175
Units
mW
O
C
P
TOT
T
J
T
S
C
C
O
Parameter
Thermal Resistance Junction to Ambient Air
Forward Voltage at IF = 100mA
Symbol
Min.
--
--
Typ.
Max.
0.3
1
Units
K/mW
V
RthA
VF
--
--
Valid provided that leads at a distance of 10 mm from case are kept at ambient temperature.
STAD-SEP.14.2004
PAGE . 1
Nominal Zener Voltage
Part Number
No m. V
BZX55-C2V4
BZX55-C2V7
BZX55-C3V0
BZX55-C3V3
BZX55-C3V6
BZX55-C3V9
BZX55-C4V3
BZX55-C4V7
BZX55-C5V1
BZX55-C5V6
BZX55-C6V2
BZX55-C6V8
BZX55-C7V5
BZX55-C8V2
BZX55-C9V1
BZX55-C10
BZX55-C11
BZX55-C12
BZX55-C13
BZX55-C15
BZX55-C16
BZX55-C18
BZX55-C20
BZX55-C22
BZX55-C24
BZX55-C27
BZX55-C30
BZX55-C33
BZX55-C36
BZX55-C39
BZX55-C43
BZX55-C47
2.4
2.7
3.0
3.3
3.6
3.9
4.3
4.7
5.1
5.6
6.2
6.8
7.5
8.2
9.1
10.0
11.0
12.0
13.0
15.0
16.0
18.0
20.0
22.0
24.0
27.0
30.0
33.0
36.0
39.0
43.0
47.0
Max. Zener Impedance
Z
ZT
@ I
ZT
Z
ZK
@ I
ZK
Ω
600
600
600
600
600
600
600
600
550
450
200
150
50
50
50
70
70
90
110
110
170
170
220
220
220
220
220
220
220
500
600
700
mA
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Max Reverse
Leakage Current
I
R
@ V
R
uA
50
10
4.0
2.0
2.0
2.0
1.0
0.5
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
V
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
2.0
3.0
5.0
6.0
7.0
7.5
8.5
9.0
10.0
11.0
12.0
14.0
15.0
17.0
18.0
20.0
22.0
24.0
27.0
30.0
33.0
36.0
V
Z
@ I
ZT
M i n. V
2.28
2.50
2.80
3.10
3.40
3.70
4.00
4.40
4.80
5.20
5.80
6.40
7.00
7.70
8.50
9.40
10.40
11.40
12.40
13.80
15.30
16.80
18.80
20.80
22.80
25.10
28.00
31.00
34.00
37.00
40.00
44.00
M a x. V
2.56
2.90
3.20
3.50
3.80
4.10
4.60
5.00
5.40
6.00
6.60
7.20
7.90
8.70
9.60
10.60
11.60
12.70
14.10
15.60
17.10
19.10
21.20
23.30
25.60
28.90
32.00
35.00
38.00
41.00
46.00
50.00
marking
co d e
55C 2V 4
55C 2V 7
55C 3V 0
55C 3V 3
55C 3V 6
55C 3V 9
55C 4V 3
55C 4V 7
55C 5V 1
55C 5V 6
55C 6V 2
55C 6V 8
55C 7V 5
55C 8V 2
55C 9V 1
55C 10V
55C11V
55C 12V
55C 13V
55C 15V
55C 16V
55C 18V
55C 20V
55C 22V
55C 24V
55C 27V
55C 30V
55C 33V
55C 36V
55C 39V
55C 43V
55C 47V
Ω
85
85
85
85
85
85
75
60
35
25
10
8
7
7
10
15
20
20
26
30
40
50
55
55
80
80
80
80
80
90
90
110
mA
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
2.5
2.5
2.5
STAD-SEP.14.2004
PAGE . 2
Typical Characteristics
(T
amb
= 25
°C
unless otherwise specified)
R
thJA
–Therm.Resist.Junction/ Ambient ( K/W)
500
V
Ztn
– Relative
VoltageChange
1.3
V
Ztn
=V
Zt
/V
Z
(25°C)
400
1.2
1.1
1.0
0.9
0.8
–60
TK
VZ
=10 x 10
–4
/K
300
l
l
8 x 10
–4
/K
6 x 10
–4
/K
4 x 10
–4
/K
2 x 10
–4
/K
0
200
100
T
L
=constant
–2 x 10
–4
/K
–4 x 10
–4
/K
0
0
5
10
15
20
l – Lead Length ( mm )
0
60
120
180
240
95 961
1
95 9599
T
j
– Junction Temperature (°C )
Fig. 1 Thermal Resistance vs. Lead Length
Fig. 4 Typical Change of Working Voltage vs. Junction
Temperature
TK
VZ
–Temperature Coefficient of V
Z
( 10
–4
/K)
P –Total Power Dissipation ( mW)
tot
600
500
400
300
15
10
5
I
Z
=5mA
200
100
0
0
–5
0
10
20
30
40
0
40
80
120
160
200
50
95 9602
T
amb
– Ambient T
emperature(°C )
95 9600
V
Z
– Z-Voltage ( V )
Fig. 2 Total Power Dissipation vs. Ambient Temperature
Fig. 5 Temperature Coefficient of Vz vs. Z-Voltage
1000
C
D
– Diode Capacitance ( pF )
200
V
Z
–VoltageChange mV )
(
T
j
=25°C
100
150
V
R
=2V
100
T
j
=25°C
I
Z
=5mA
10
50
1
0
95 9598
0
5
10
15
20
25
95 9601
0
5
10
15
20
25
V
Z
– Z-Voltage ( V )
V
Z
– Z-Voltage ( V )
Fig. 3 Typical Change of Working Voltage under Operating
Conditions at T
amb
=25°C
Fig. 6 Diode Capacitance vs. Z-Voltage
STAD-SEP.14.2004
PAGE . 3
100
I
F
– Forward Current ( mA)
50
40
30
20
10
0
P
tot
=500mW
T
amb
=25°C
T
j
=25°C
1
0.1
0.01
0.001
0
0.2
0.4
0.6
0.8
1.0
I
Z
– Z-Current ( mA)
10
15
95 9607
20
25
30
35
95 9605
V
F
– Forward Voltage ( V )
V
Z
– Z-Voltage ( V )
Fig. 7 Forward Current vs. Forward Voltage
Fig. 9 Z-Current vs. Z-Voltage
I
Z
– Z-Current ( mA)
80
60
40
20
0
0
4
8
12
r
Z
– Differential Z-Resistance (
Ω
)
100
1000
P
tot
=500mW
T
amb
=25°C
I
Z
=1mA
100
5mA
10
10mA
1
T
j
=25°C
0
5
10
15
20
25
V
Z
– Z-Voltage ( V )
16
20
95 9606
95 9604
V
Z
– Z-Voltage ( V )
Fig. 8 Z-Current vs. Z-Voltage
Z
thp
–ThermalResistance PulseCond.(K/W)
for
Fig. 10 Differential Z-Resistance vs. Z-Voltage
1000
t
p
/T=0.5
100
t
p
/T=0.2
Single Pulse
R
thJA
=300K/W
T=T
jmax
–T
amb
10
t
p
/T=0.01
t
p
/T=0.1
t
p
/T=0.02
t
p
/T=0.05
1
10
–1
10
0
10
1
i
ZM
=(–V
Z
+(V
Z2
+4r
zj
x
T/Z
thp
)
1/2
)/(2r
zj
)
10
2
95 9603
t
p
– Pulse Length ( ms )
Fig. 11 Thermal Response
STAD-SEP.14.2004
PAGE . 4