首页 > 器件类别 > 电源/电源管理 > 电源电路

CM431ACM2R3TR

Regulator

器件类别:电源/电源管理    电源电路   

厂商名称:虹冠电子(Champion)

下载文档
器件参数
参数名称
属性值
厂商名称
虹冠电子(Champion)
包装说明
,
Reach Compliance Code
unknown
文档预览
CM431
L
OW
V
OLTAGE
A
DJUSTABLE
S
HUNT
R
EGULATOR
GENERAL DESCRIPTION
The CM431 is a three-terminal adjustable shunt voltage regulator
with specified thermal stability and pin-to-pin compatible with the
earlier 431 series. The output voltage can be adjusted to any
value between V
REF
and 36V by using two external resistors. The
CM431 offers low output impedance for improved load regulation
with a typical output impedance of 200mΩ. Because of the
active output circuitry, the CM431 can replace the zener diodes in
applications such as switching power supplies, OVP crowbar
circuits, references for A/D, D/A converters with improved turn-on
characteristics.
!
!
!
!
!
Voltage Reference
Precision shunt regulator
High current shunt regulator
PWM down converter with reference
Voltage monitor
FEATURES
!
!
!
!
!
!
!
Initial voltage reference accuracy of 1.0%.
Sink current capability from 1mA to 100mA
Typical output dynamic impedance less than 200mΩ;
Adjustable output voltage from V
REF
to 36V
Available in SOT-23, SOT-89, TO-92, & SOP-8
Low output noise
Typical equivalent full range temperature coefficient of
30ppm/ C
O
APPLICATIONS
PIN CONFIGURATION
TO-92
Front View
SOT-23-3
Top View
3
CATHODE
REF
ANODE
CM431XCM233
Pin 1
Pin 2
Pin 3
1
2
CM431XCM2R3
CATHODE
REF
ANODE
REF
CATHODE
ANODE
Suffix “X”: Grade “A”, “B”, “C”, or “D”
1
2
3
SOT-23-5
Top View
5
4
SOT-89
Top View
1
SOP-8
Top View
C OE
ATH D
N
C
N
C
N
C
R
EF
N
C
AN D
OE
N
C
8
7
6
5
CATHO D E REF
CATHODE
ANO DE
REF
ANODE
2
3
4
NC
NC
1
2
3
1
2
3
2003/03/24
Preliminary
Rev.1.1
Champion Microelectronic Corporation
Page 1
CM431
L
OW
V
OLTAGE
A
DJUSTABLE
S
HUNT
R
EGULATOR
TYPICAL APPLICATION
V+
R
b
R1
27.5K
0.1%
R2
27.5K
0.1%
V
REF
ANODE
5V Precision Regulator
V
O
= 5V
CATHODE
BLOCK DIAGRAM
REF
Note: R
b
should
provide cathode
current
1mA
+
-
ORDERING INFORMATION
PACKAGE
0.5%
SOT-23
SOT-23
SOT-89
TO-92
1
TOLERANCE
0.7%
CM431DCM233
CM431DCM2R3
CM431DCM89
CM431DCN
CM431DCS
1.0%
CM431BCM233
CM431BCM2R3
CM431BCM89
CM431BCN
CM431BCS
T/R Quantity
TR=3K
TR=3K
TR=1K
TA=2K
CM431ACM233
CM431ACM2R3
CM431ACM89
CM431ACN
CM431ACS
1
1
2
SOP-8
Notes:
(1)
Add suffix
″TR″for
Tape & Reel.
(2)
Add suffix
″TA″for
Tape Ammo.
2003/03/24
Preliminary
Rev.1.1
Champion Microelectronic Corporation
Page 2
CM431
L
OW
V
OLTAGE
A
DJUSTABLE
S
HUNT
R
EGULATOR
ABSOLUTE MAXIMUM RATINGS
Cathode to Anode Voltage (V
KA
) (Note 2)
Continuous Cathode Current (I
K
)
Reference Input Current (I
REF
)
Maximum junction temperature range, T
J
Storage temperature range
Lead temperature (soldiering, 10 seconds)
Note 1:
Note 2:
Currents are positive into, negative out of the specified terminal.
Voltage values are with respect to the anode terminal unless otherwise noted.
-0.3V to 37V
-100mA to 150mA
-50uA to 10mA
150 C
-65 C to 150 C
260
O
C
O
O
O
Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground.
POWER DISSIPATION TABLE
Package
SOP-8
TO-92
SOT-89
θ
JA
O
( C/W )
165
156
71(note)
Derating factor ( mW/ C )
O
T
A
≧25
C
6.06
6.41
14.1
O
T
A
≦25
C
Power rating(mW)
757
801
1763
O
T
A
=70 C
Power rating(mW)
485
513
1128
O
T
A
= 85 C
Power rating (mW)
394
417
916
228
O
SOT-23
285
3.5
438
280
Note :
O
1. For SOT-89 package, Thermal Resistance-Junction to Tab (
θ
JT
) = 35 C/W. T
J
= T
TAB
+ (P
D
x
θ
JT
)
2.
θ
JA
:
Thermal Resistance-Junction to Ambient
Junction Temperature Calculation: T
J
= T
A
+ (P
D
x
θ
JA
).
The
θ
JA
numbers are guidelines for the thermal performance of the device/PC-board system.
All of the above assume no ambient airflow.
RECOMMENDED OPERATING CONDITIONS
Min
Operating free air temperature range, T
A
Cathode current, I
K
Cathode voltage, V
KA
0
1
0
Max
105
100
36
Units
O
C
mA
V
2003/03/24
Preliminary
Rev.1.1
Champion Microelectronic Corporation
Page 3
CM431
L
OW
V
OLTAGE
A
DJUSTABLE
S
HUNT
R
EGULATOR
ELECTRICAL CHARACTERISTICS
Unless otherwise specified, these specifications apply over the operating ambient temperatures with T
A
= 25°C.
°
Parameter
Symbol
Test Conditions
I
K
= 10mA, V
KA
= V
REF
,0.5%
CM431
Min
2.482
2.478
2.470
O
Typ
2.495
2.495
2.495
4
-1.4
2
Max
2.507
2.512
2.520
17
-2.7
4
2.3
1
1
0.5
Units
V
V
V
mV
mV/V
µA
mA
µA
Reference Input Voltage
Reference Drift
Voltage Ratio, Ref to Cathode
(note 4)
Reference Input Current
Minimum Operating Current
Off-State Cathode Current
Dynamic Impedance
V
REF
I
K
= 10mA, V
KA
= V
REF
,0.7%
I
K
= 10mA, V
KA
= V
REF
,1.0%
I
K
= 10mA, V
KA
= V
REF
, 0 C
T
A
70 C
O
I
K
= 10mA, V
KA
= 2.5V to 36V
I
REF
I
MIN
I
OFF
|Z
KA
|
I
K
= 10mA,V
KA
= V
REF
I
K
= 10mA,V
KA
= V
REF
, 0 C
T
A
70 C
O
O
V
KA
= V
REF
V
KA
= 36V, V
REF
= 0V
V
KA
= V
REF
, I
K
= 1mA to 100mA,
f
1kHz
0.4
0.1
0.2
Note 3: These parameters are guaranteed by design
Note 4:
V
REF
V
KA
Ratio of change in reference input voltage to the change in cathode voltage
2003/03/24
Preliminary
Rev.1.1
Champion Microelectronic Corporation
Page 4
CM431
L
OW
V
OLTAGE
A
DJUSTABLE
S
HUNT
R
EGULATOR
PARAMETER MEASUREMENT INFORMATION
Input
V
KA
Input
V
KA
R1
I
REF
R2
V
RE
(1 + R1/R2) + I
REF
x R1
Figure 1.
Test Circuit for V
KA
= V
REF
Figure 2.
Test Circuit for V
KA
>
V
REF
Input
V
KA
I
OFF
Figure 3.
Test Circuit for I
OFF
2003/03/24
Preliminary
Rev.1.1
Champion Microelectronic Corporation
Page 5
查看更多>
SiC与ZVS软开关电路更配!——谈怎么提高ZVS电路效率
我们知道,ZVS的主要目标是在开关器件(如MOSFET或IGBT)处于零电压状态下切换,从而减少开关损耗,使之大幅提高转换效率。但难道这样子就足够了吗?很明显,我们还希望能更进一步的提高,那么该怎么提高ZVS电路效率呢?从优化电路电路参数角度上,怎么选择谐振元件?如何判断不同需求下该选用哪种拓扑结构?从改进开关器件的驱动和控制角度上,如何优化驱动电路参数?是否需要采用PWM或PFM控制技术?从降低固定损耗角度来看,要选择什么样参数的电容电阻?怎么进行散热优化?...
okhxyyo 电源技术
top系列电源设计软件
top系列电源设计软件,英文的。top系列电源设计软件...
terrykgm 电源技术
开关电源维修绝技
一个老爷爷级的老外来修电源,有一个坏电源的情况是这样的:老外发现一个地方短路,但是找了半天看不出来是什么导致短路了,老外就在这个地方接一个直流电压源,然后限流输出,把这个短路的地方烧出来。厉害吧!开关电源维修绝技这个方法好,比那些死板的方法好,灵活外接直流电压源,然后限流输出,把短路的地方烧出来。这个也是非常之法。。。经验珍贵…顶一个…这个方法的确挺不错。。。。。。。。。哈哈,非常之法非常使用...
半导体狂人 电源技术
电源设计中的电容应用实例(建议收藏)
电源往往是我们在电路设计过程中最容易忽略的环节。其实,作为一款优秀的设计,电源设计应当是很重要的,它很大程度影响了整个系统的性能和成本。这里,只介绍一下电路板电源设计中的电容使用情况。这往往又是电源设计中最容易被忽略的地方。很多人搞ARM,搞DSP,搞FPGA,乍一看似乎搞的很高深,但未必有能力为自己的系统提供一套廉价可靠的电源方案。这也是我们国产电子产品功能丰富而性能差的一个主要原因,根源是研发风气吧,大多研发工程师毛燥、不踏实;而公司为求短期效益也只求功能丰富,只管今天杀鸡饱餐一顿,不管...
木犯001号 电源技术
锂电池成为真命天子要过5道坎!
目前混合动力汽车主要采用镍氢电池技术,但镍氢电池的一些技术性能如能量密度、充放电速度等已经接近理论极限值。而锂电池具有能量密度高、容量大、无记忆性等优点,得到汽车厂商和电池厂商的一致认可,目前各国研发的重点正是锂离子电池。根据正极材料不同,锂电池主要有钴酸锂、锰酸锂、三元材料和磷酸铁锂四种。其中磷酸铁锂是目前最理想的动力汽车用锂电正极材料。目前,我国车企推出的纯电动车车型中,动力电池均为锂电池,奇瑞、比亚迪使用的均是磷酸铁锂。中国的《汽车产业振兴规划》提出...
cscl 电源技术
怎样做PWM占空比可控的buck电路?
用RAM生成PWM且实时控制PWM掌控,是输出电压连续变化,可行吗?怎样做PWM占空比可控的buck电路?“是输出电压连续变化”疑为“使输出电压连续变化”之误。既然提到RAM,想必是数字方法生成PWM波宽度。既然是数字控制,其PWM输出必然不能连续变化,只能一步一步变化,当然输出电压也是一步一步变化(其它条件不变情况下)。步长可以做得很小,但不可能连续(连续的意思是可以任意小)。还是建议楼主,把输出的PWM信号,变化你的程序观察一下,然后用示波器观看一下,maychang老师说的很对...
zxming0101 电源技术