首页 > 器件类别 > 半导体 > 分立半导体

GLZJ18

56 V, 0.5 W, SILICON, UNIDIRECTIONAL VOLTAGE REGULATOR DIODE

器件类别:半导体    分立半导体   

厂商名称:强茂(PANJIT)

厂商官网:http://www.panjit.com.tw/

下载文档
文档预览
DATA SHEET
GLZJ2.0~GLZJ56
SURFACE MOUNT ZENER DIODES
VOLTAGE
2.0 to 56 Volts
POWER
500 mWatts
MINI-MELF/LL-34
Unit : inch (mm)
FEATURES
• Planar Die construction
• 500mW Power Dissipation
• Ideally Suited for Automated Assembly Processes
• Both normal and Pb free product are available :
Normal : 80~95% Sn, 5~20% Pb
Pb free: 98.5% Sn above
.055(1.4)DIA.
.063(1.6)
MECHANICAL DATA
• Case: Molded Glass MINI-MELF
• Terminals: Solderable per MIL-STD-202E, Method 208
• Polarity: See Diagram Below
• Approx. Weight: 0.03 grams
• Mounting Position: Any
• Packing information
T/R - 2.5K per 7" plastic Reel
T/R - 10K per 13" plastic Reel
.020(0.5)
.012(0.3)
.146(3.7)
.130(3.3)
.020(0.5)
.012(0.3)
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
P ar m et r
a
e
P ow erD i si aton atTam b = 25
s p i
Juncton Tem per t r
i
aue
S t r ge Tem per t r R ange
oa
aue
O
S ym bol
Val e
u
500
175
- 5 t +175
6 o
U nis
t
mW
O
C
P
TO T
T
J
T
S
C
C
O
Vald pr vi ed t atl ads ata di t nce of10m m fom case ar keptatam bi ntt m per t r .
i o d
h e
sa
r
e
e e
aue
P ar m et r
a
e
Ther alR esi t nce Juncton t A m bi ntA i
m
sa
i o
e
r
For ar Volage atI = 100m A
w d
t
F
S ym bol
M i.
n
-
-
-
-
Typ.
M ax.
0.
3
1
U nis
t
K/ W
m
V
Rt A
h
VF
-
-
-
-
Vald pr vi ed t atl ads ata di t nce of10m m fom case ar keptatam bi ntt m per t r .
i o d
h e
sa
r
e
e e
aue
STAD-SEP.14.2004
PAGE . 1
P
ART
N
UMBER
GLZJ 2.0
GLZJ 2.2
GLZJ 2.4
GLZJ 2.7
GLZJ 3.0
GLZJ 3.3
GLZJ 3.6
GLZJ 3.9
C LA S S
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
C
A
V
Z
@ I
ZT
M
IN
. V
1.88
2.02
2.12
2.22
2.33
2.43
2.54
2.69
2.85
3.01
3.16
3.32
3.46
3.60
3.74
3.89
4.04
4.17
4.30
4.44
4.55
4.68
4.81
4.94
5.09
5.28
5.45
5.61
5.78
5.96
6.12
6.29
6.49
6.66
6.85
7.07
7.29
7.53
7.78
8.03
8.29
8.57
8.83
9.12
9.41
9.70
9.94
10.18
10.50
10.82
M
AX
. V
2.10
2.20
2.30
2.41
2.52
2.63
2.75
2.91
3.07
3.22
3.38
3.53
3.69
3.84
4.01
4.16
4.29
4.43
4.57
4.68
4.80
4.93
5.07
5.20
5.37
5.55
5.73
5.91
6.09
6.27
6.44
6.63
6.83
7.01
7.22
7.45
7.67
7.92
8.19
8.45
8.73
9.01
9.30
9.59
9.90
10.20
10.44
10.71
11.05
11.38
IZ
(m A )
5
5
5
5
5
5
5
5
VR
(V )
0.5
0.7
1.0
1.0
1.0
1.0
1.0
1.0
IR (
U
A )
MA X
120
100
120
100
50
20
10
5
I
ZT
(m A )
5
5
5
5
5
5
5
5
Z
ZT
(Ω)
MA X
100
100
100
110
120
120
100
100
I
ZK
(m A)
0.5
0.5
0.5
0.5
0.5
0.5
1
1
Z
ZK
(Ω)
MA X
1000
1000
1000
1000
1000
1000
1000
1000
M a r k i ng
Code
Z2A0
Z2B0
Z2A2
Z2B2
Z2A4
Z2B4
Z2A7
Z2B7
Z3A0
Z3B0
Z3A3
Z3B3
Z3A6
Z3B6
Z3A9
Z3B9
Z4A3
Z4B3
Z4C3
Z4A7
GLZJ 4.3
5
1.0
5
5
100
1
1000
GLZJ 4.7
B
C
A
5
1.0
5
5
90
1
900
Z4B7
Z4C7
Z5A1
GLZJ 5.1
B
C
A
5
1.5
5
5
80
1
800
Z5B1
Z5C1
Z5A6
GLZJ 5.6
B
C
A
5
2.5
5
5
60
1
500
Z5B6
Z5C6
Z6A2
GLZJ 6.2
B
C
A
5
3.0
5
5
60
1
300
Z6B2
Z6C2
Z6A8
GLZJ 6.8
B
C
A
5
3.5
2
5
20
0.5
150
Z6B8
Z6C8
Z7A5
GLZJ 7.5
B
C
A
5
4.0
0.5
5
20
0.5
120
Z7B5
Z7C5
Z8A2
GLZJ 8.2
B
C
A
5
5.0
0.5
5
20
0.5
120
Z8B2
Z8C2
Z9A1
GLZJ 9.1
B
C
A
B
C
D
A
5
6.0
0.5
5
25
0.5
120
Z9B1
Z9C1
Z10A
Z10B
Z10C
Z10D
Z11A
GZLJ 10
5
7.0
0.2
5
30
0.5
120
GLZJ 11
B
C
5
8.0
0.2
5
30
0.5
120
Z11B
Z11C
STAD-SEP.14.2004
PAGE . 2
Part Number
C LA S S
A
V
Z
@ I
ZT
M i n. V
11.13
11.44
11.74
12.11
12.55
12.99
13.44
13.89
14.35
14.80
15.25
15.69
16.22
16.82
17.42
18.02
18.63
19.23
19.72
20.15
20.64
21.08
21.52
22.05
22.61
23.12
23.63
24.26
24.97
25.63
26.29
26.99
27.70
28.36
29.02
29.68
30.32
30.90
31.49
32.14
32.79
33.40
34.01
34.68
35.36
36.00
36.63
40.00
44.00
48.00
53.00
M a x. V
11.71
12.03
12.35
12.75
13.21
13.66
14.13
14.62
15.09
15.57
16.04
16.51
17.06
17.70
18.33
18.96
19.59
20.22
20.72
21.20
21.71
22.17
22.63
23.18
23.77
24.31
24.85
25.52
26.26
26.95
27.64
28.39
29.13
29.82
30.51
31.22
31.88
32.50
33.11
33.79
34.49
35.13
35.77
36.47
37.19
37.85
38.52
45.00
49.00
54.00
60.00
IZ
(m A )
5
VR
(V )
9.0
IR ( u A )
MA X
0.2
Iz t
(mA )
5
Z
ZT
(Ω)
MA X
30
I
ZK
(m A)
0.5
Z
ZK
(Ω)
MA X
110
M a r k i ng
code
Z12A
Z12B
Z12C
Z13A
GLZJ 12
B
C
A
GLZJ 13
B
C
A
5
10
0.2
5
35
0.5
110
Z13B
Z13C
Z15A
GLZJ 15
B
C
A
5
11
0.2
5
40
0.5
110
Z15B
Z15C
Z16A
GLZJ 16
B
C
A
5
12
0.2
5
40
0.5
150
Z16B
Z16C
Z18A
GLZJ 18
B
C
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
5
13
0.2
5
45
0.5
150
Z18B
Z18C
Z20A
Z20B
Z20C
Z20D
Z22A
Z22B
Z22C
Z22C
Z24A
Z24B
Z24C
Z24D
Z27A
Z27B
Z27C
Z27D
Z30A
Z30B
Z30C
Z30D
Z33A
Z33B
Z33C
Z33D
Z36A
Z36B
Z36C
Z36D
Z39A
Z39B
Z39C
Z39D
Z43
Z47
Z51
Z56
GLZJ 20
5
15
0.2
5
55
0.5
200
GLZJ 22
5
17
0.2
5
30
0.5
200
GLZJ 24
5
19
0.2
5
35
0.5
200
GLZJ 27
5
21
0.2
5
45
0.5
250
GLZJ 30
5
23
0.2
5
55
0.5
250
GLZJ 33
5
25
0.2
5
65
0.5
250
GLZJ 36
5
27
0.2
5
75
0.5
250
GLZJ 39
5
30
0.2
5
85
0.5
250
GLZJ 43
GLZJ 47
GLZJ 51
GLZJ 56
5
5
5
5
33
36
39
43
0.2
0.2
0.2
0.2
5
5
5
5
90
90
110
110
--
--
--
--
--
--
--
--
STAD-SEP.14.2004
PAGE . 3
Typical Characteristics
(T
amb
= 25
°C
unless otherwise specified)
R
thJA
–Therm.Resist.Junction/ Ambient ( K/W)
500
V
Ztn
– Relative
VoltageChange
1.3
V
Ztn
=V
Zt
/V
Z
(25°C)
400
1.2
1.1
1.0
0.9
0.8
–60
TK
VZ
=10 x 10
–4
/K
300
l
l
8 x 10
–4
/K
6 x 10
–4
/K
4 x 10
–4
/K
2 x 10
–4
/K
0
–2 x 10
–4
/K
–4 x 10
–4
/K
200
100
T
L
=constant
0
0
5
10
15
20
l – Lead Length ( mm )
0
60
120
180
240
95 961
1
95 9599
T
j
– Junction Temperature (°C )
Fig. 1 Thermal Resistance vs. Lead Length
Fig. 4 Typical Change of Working Voltage vs. Junction
Temperature
TK
VZ
–Temperature Coefficient of V
Z
( 10
–4
/K)
P –Total Power Dissipation ( mW)
tot
600
500
400
300
15
10
5
I
Z
=5mA
200
100
0
0
–5
0
10
20
30
40
0
40
80
120
160
200
50
95 9602
T
amb
– Ambient T
emperature(°C )
95 9600
V
Z
– Z-Voltage ( V )
Fig. 2 Total Power Dissipation vs. Ambient Temperature
Fig. 5 Temperature Coefficient of Vz vs. Z-Voltage
1000
C
D
– Diode Capacitance ( pF )
200
V
Z
–VoltageChange mV )
(
T
j
=25°C
100
150
V
R
=2V
T
j
=25°C
100
I
Z
=5mA
10
50
1
0
95 9598
0
5
10
15
20
25
95 9601
0
5
10
15
20
25
V
Z
– Z-Voltage ( V )
V
Z
– Z-Voltage ( V )
Fig. 3 Typical Change of Working Voltage under Operating
Conditions at T
amb
=25°C
Fig. 6 Diode Capacitance vs. Z-Voltage
STAD-SEP.14.2004
PAGE . 4
100
I
F
– Forward Current ( mA)
50
40
30
20
10
0
P
tot
=500mW
T
amb
=25°C
T
j
=25°C
1
0.1
0.01
0.001
0
0.2
0.4
0.6
0.8
1.0
I
Z
– Z-Current ( mA)
10
15
95 9607
20
25
30
35
95 9605
V
F
– Forward Voltage ( V )
V
Z
– Z-Voltage ( V )
Fig. 7 Forward Current vs. Forward Voltage
Fig. 9 Z-Current vs. Z-Voltage
I
Z
– Z-Current ( mA)
80
60
40
20
0
0
4
8
12
r
Z
– Differential Z-Resistance (
)
100
1000
P
tot
=500mW
T
amb
=25°C
I
Z
=1mA
100
5mA
10
10mA
1
T
j
=25°C
0
5
10
15
20
25
V
Z
– Z-Voltage ( V )
16
20
95 9606
95 9604
V
Z
– Z-Voltage ( V )
Fig. 8 Z-Current vs. Z-Voltage
Z
thp
–ThermalResistance PulseCond.(K/W)
for
Fig. 10 Differential Z-Resistance vs. Z-Voltage
1000
t
p
/T=0.5
100
t
p
/T=0.2
Single Pulse
10
t
p
/T=0.1
R
thJA
=300K/W
T=T
jmax
–T
amb
t
p
/T=0.01
t
p
/T=0.02
t
p
/T=0.05
i
ZM
=(–V
Z
+(V
Z2
+4r
zj
x
T/Z
thp
)
1/2
)/(2r
zj
)
10
0
10
1
t
p
– Pulse Length ( ms )
10
2
1
10
–1
95 9603
Fig. 11 Thermal Response
STAD-SEP.14.2004
PAGE . 5
查看更多>