首页 > 器件类别 > 分立半导体 > 二极管

GMZJ6.2B

Zener Diode, 6.12V V(Z), 2.53%, 0.5W, Silicon, Unidirectional, ROHS COMPLIANT, GLASS, MICROMELF-2

器件类别:分立半导体    二极管   

厂商名称:强茂(PANJIT)

厂商官网:http://www.panjit.com.tw/

器件标准:

下载文档
器件参数
参数名称
属性值
是否无铅
不含铅
是否Rohs认证
符合
厂商名称
强茂(PANJIT)
零件包装代码
MELF
包装说明
O-LELF-R2
针数
2
Reach Compliance Code
compliant
ECCN代码
EAR99
外壳连接
ISOLATED
配置
SINGLE
二极管元件材料
SILICON
二极管类型
ZENER DIODE
JESD-30 代码
O-LELF-R2
元件数量
1
端子数量
2
最高工作温度
175 °C
封装主体材料
GLASS
封装形状
ROUND
封装形式
LONG FORM
峰值回流温度(摄氏度)
NOT SPECIFIED
极性
UNIDIRECTIONAL
最大功率耗散
0.5 W
认证状态
Not Qualified
标称参考电压
6.12 V
表面贴装
YES
技术
ZENER
端子形式
WRAP AROUND
端子位置
END
处于峰值回流温度下的最长时间
NOT SPECIFIED
最大电压容差
2.53%
工作测试电流
5 mA
Base Number Matches
1
文档预览
DATA SHEET
GMZJ2.0~GMZJ56
SURFACE MOUNT ZENER DIODES
VOLTAGE
2.0 to 56 Volts
POWER
500 mWatts
MICRO-MELF
Unit : inch (mm)
FEATURES
• Planar Die construction
• 500mW Power Dissipation
• Ideally Suited for Automated Assembly Processes
.049(1.25)
.047(1.2)DIA.
MECHANICAL DATA
• Case: Molded Glass MICRO-MELF
• Terminals: Solderable per MIL-STD-202, Method 208
• Polarity: See Diagram Below
• Approx. Weight: 0.008 grams
• Mounting Position: Any
• Packing information
T/R - 2.5K per 7" plastic Reel
.079(2.0)
.071(1.8)
.043(1.1)
.008(0.2)
.008(0.2)
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Parameter
Power Dissipation at Tamb = 25
Junction Temperature
Storage Temperature Range
O
Symbol
Value
500
175
-65 to +175
Units
mW
O
C
P
TOT
T
J
T
S
C
C
O
Valid provided that leads at a distance of 10mm from case are kept at ambient temperature.
Parameter
Thermal Resi stance Juncti on to Ambi ent Ai r
Forward Voltage at IF = 100mA
Symbol
Mi n.
--
--
Typ.
Max.
0.3
1
Uni ts
K/mW
V
RthA
VF
--
--
Vali d provi ded that leads at a di stance of 10mm from case are kept at ambi ent temperature.
STAD-JUL.19.2003
PAGE . 1
Part Number
GMZJ 2.0
GMZJ 2.2
GMZJ 2.4
GMZJ 2.7
GMZJ 3.0
GMZJ 3.3
GMZJ 3.6
GMZJ 3.9
C LA S S
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
C
A
V
Z
@ I
ZT
M i n. V
1.88
2.02
2.12
2.22
2.33
2.43
2.54
2.69
2.85
3.01
3.16
3.32
3.455
3.60
3.74
3.89
4.04
4.17
4.30
4.44
4.55
4.68
4.81
4.94
5.09
5.28
5.45
5.61
5.78
5.96
6.12
6.29
6.49
6.66
6.85
7.07
7.29
7.53
7.78
8.03
8.29
8.57
8.83
9.12
9.41
9.70
9.94
10.18
10.50
10.82
M a x. V
2.10
2.20
2.30
2.41
2.52
2.63
2.75
2.91
3.07
3.22
3.38
3.53
3.695
3.845
4.01
4.16
4.29
4.43
4.57
4.68
4.80
4.93
5.07
5.20
5.37
5.55
5.73
5.91
6.09
6.27
6.44
6.63
6.83
7.01
7.22
7.45
7.67
7.92
8.19
8.45
8.73
9.01
9.30
9.59
9.90
10.20
10.44
10.71
11.05
11.38
IZ
(m A )
5
5
5
5
5
5
5
5
VR
(V )
0.5
0.7
1.0
1.0
1.0
1.0
1.0
1.0
IR ( u A )
MA X
120
100
120
100
50
20
10
5
Iz t
(mA )
5
5
5
5
5
5
5
5
Z
ZT
(Ω )
MA X
100
100
100
110
120
120
100
100
I
ZK
(
m
A)
0.5
0.5
0.5
0.5
0.5
0.5
1
1
Z
ZK
(Ω )
MA X
1000
1000
1000
1000
1000
1000
1000
1000
GMZJ 4.3
5
1.0
5
5
100
1
1000
GMZJ 4.7
B
C
A
5
1.0
5
5
90
1
900
GMZJ 5.1
B
C
A
5
1.5
5
5
80
1
800
GMZJ 5.6
B
C
A
5
2.5
5
5
60
1
500
GMZJ 6.2
B
C
A
5
3.0
5
5
60
1
300
GMZJ 6.8
B
C
A
5
3.5
2
5
20
0.5
150
GMZJ 7.5
B
C
A
5
4.0
0.5
5
20
0.5
120
GMZJ 8.2
B
C
A
5
5.0
0.5
5
20
0.5
120
GMZJ 9.1
B
C
A
B
C
D
A
5
6.0
0.5
5
25
0.5
120
GMZJ 10
5
7.0
0.2
5
30
0.5
120
GMZJ 11
B
C
5
8.0
0.2
5
30
0.5
120
STAD-JUL.19.2003
PAGE . 2
Part Number
C LA S S
A
V
Z
@ I
ZT
M i n. V
11.13
11.44
11.74
12.11
12.55
12.99
13.44
13.89
14.35
14.80
15.25
15.69
16.22
16.82
17.42
18.02
18.63
19.23
19.72
20.15
20.64
21.08
21.52
22.05
22.61
23.12
23.63
24.26
24.97
25.63
26.29
26.99
27.70
28.36
29.02
29.68
30.32
30.90
31.49
32.14
32.79
33.40
34.01
34.68
35.36
36.00
36.63
40.00
44.00
48.00
53.00
M a x. V
11.71
12.03
12.35
12.75
13.21
13.66
14.13
14.62
15.09
15.57
16.04
16.51
17.06
17.70
18.33
18.96
19.59
20.22
20.72
21.20
21.71
22.17
22.63
23.18
23.77
24.31
24.85
25.52
26.26
26.95
27.64
28.39
29.13
29.82
30.51
31.22
31.88
32.50
33.11
33.79
34.49
35.13
35.77
36.47
37.19
37.85
38.52
45.00
49.00
54.00
60.00
IZ
(m A )
5
VR
(V )
9.0
IR ( u A )
MA X
0.2
Iz t
(mA )
5
Z
ZT
(Ω )
MA X
30
I
ZK
(
m
A)
0.5
Z
ZK
(Ω )
MA X
110
GMZJ 12
B
C
A
GMZJ 13
B
C
A
5
10
0.2
5
35
0.5
110
GMZJ 15
B
C
A
5
11
0.2
5
40
0.5
110
GMZJ 16
B
C
A
5
12
0.2
5
40
0.5
150
GMZJ 18
B
C
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
5
13
0.2
5
45
0.5
150
GMZJ 20
5
15
0.2
5
55
0.5
200
GMZJ 22
5
17
0.2
5
30
0.5
200
GMZJ 24
5
19
0.2
5
35
0.5
200
GMZJ 27
5
21
0.2
5
45
0.5
250
GMZJ 30
5
23
0.2
5
55
0.5
250
GMZJ 33
5
25
0.2
5
65
0.5
250
GMZJ 36
5
27
0.2
5
75
0.5
250
GMZJ 39
5
30
0.2
5
85
0.5
250
GMZJ 43
GMZJ 47
GMZJ 51
GMZJ 56
5
5
5
5
33
36
39
43
0.2
0.2
0.2
0.2
5
5
5
5
90
90
110
110
--
--
--
--
--
--
--
--
STAD-JUL.19.2003
PAGE . 3
TEMPERATURE COEFFICIENT,(mA/
O
C)
8
7
6
5
4
3
2
1
TEMPERATURE COEFFICIENT,(mA/
O
C)
100
10
0
-1
-2
-3
2
3
4
5
6
7
8
9
10
11
12
1
10
100
NOMINAL ZENER VOLTAGE,VOLTS
NOMINAL ZENER VOLTAGE,VOLTS
Fig.1 TEMPERATURE COEFFICENTS
Fig.2 TEMPERATURE COEFFICENTS
1000
DYNAMIC IMPEDANCE,W
IZ = 1 mA
FORWARD CURRENT,mA
T
J
=25 C
I
Z(AC)=0.1
I
Z(DC)
F=1 kHZ
O
1000
100
5 mA
20 mA
100
10
10
150
O
C
75 C
O
25
O
C
5C
O
1
1
10
NORMAL ZENER VOLTAGE, VOLTS
100
1
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
FORWARD VOLTAGE, VOLTS
Fig.3 EFFECT OF ZENER VOLTAGE ON ZENER IMPEDANCE
Fig.4 TYPICAL FORWARD VOLTAGE
1000
0.6
POWER DISSIPATION, Watts
0 V BIAS
1 V BIAS
T
A
=25
O
C
T
A
=25
o
C
0.5
0.4
0.3
0.2
0.1
0
0
25
50
75
100
125
O
CAPACITANCE,pF
100
BIASAT
50% OF VZ NOM
10
1
150
175
200
1
10
NORMAL ZENER VOLTAGE, VOLTS
100
TEMPERATURE ( C)
Fig.5 STEADY STATE POWER DERATING
STAD-JUL.19.2003
Fig.6 TYPICAL CAPACITANCE
PAGE . 4
100
T
A
=25
o
C
100
T
A
=25
o
C
ZENER CURRENT,mA
10
ZENER CURRENT,mA
10
1
1
0.1
0.1
0.01
0
2
4
6
8
10
12
0.01
10
30
50
70
90
ZENER VOLTAGE, VOLTS
Fig.7 ZENER VOLTAGE VERSUS ZENER CURRENT
ZENER VOLTAGE, VOLTS
Fig.8 ZENER VOLTAGE VERSUS ZENER CURRENT
1000
LEAKAGE CURRENT,uA
100
10
1
0.1
0.01
0.001
0.0001
0.00001
0
10
20
30
40
50
60
70
+150 C
O
+25 C
-55 C
80
90
O
O
NORMAL ZENER VOLTAGE, VOLTS
Fig.9 TYPICAL LEAKAGE CURRENT
STAD-JUL.19.2003
PAGE . 5
查看更多>
缺芯困境如何解决?云汉芯城了解一下!
近年来,芯片短缺一直是行业内热议的话题,尽管台积电等国际大厂不断扩产,但芯片短缺问题依旧没能得到缓解。据媒体报道,全球芯片交货周期严重滞后,部分产品交货周期逼近2年,让电子产品等多个行业备受困扰。芯片供应中断和价格上涨,已经严重影响企业的生产进度。作为电子制造业供应链数字化和信息数据服务商,云汉芯城苦练内功,依托多年积累从容应对市场激变和突发事件,在全球化的缺芯困境前: 全国仓储布局,全球物流畅通,进口物料交期提前; 热门品牌物料,稳定供应,云...
eric_wang 综合技术交流
阅读打卡第四站:芯片设计面面观--《了不起的芯片》
活动详情:走近《了不起的芯片》本次是《了不起的芯片》阅读打卡第四站,跟帖回复作者提出以下问题,作者温戈助力读书打卡题目: 简述芯片设计前端到后端的流程。 时钟树综合的目标是什么? EDA研发都要涉及哪些技术? 芯片的使用周期(寿命)可以分为几个阶段?哪一个阶段失效的概率最低? 卷积神经网络(CNN)中,padding的概念是什么?分为哪几种? 芯片设计中,什么是流水线?流水线的级数可以无限增加吗?有哪些因素会限制流水线的级数?本次一起读书的小伙伴们,...
EEWORLD社区 综合技术交流
speic电路问题,计算和仿真都可以但就是做出来有问题,请教大家啦!!
按照speic电路模型,计算出L1=L2=100uH,(用工字电感)。Cs是用22uF的极性电容,mos管用IRF540N,pwm20k,输出电容为104和10uF的极性电容,负载280欧,二极管用IN5822肖特基二极管,输入用5v但无论怎么改变占空比输出都是0.不知道什么原因speic电路问题,计算和仿真都可以但就是做出来有问题,请教大家啦!!我帮你顶一下帖子吧,省得被沉了。可惜你这个问题我帮不上忙哦,我不懂。你这是用的proteus仿真吗,这个可靠不?怎么不用multisim...
孤鹰 综合技术交流
今日直播:ADI在可穿戴产品中的生命体征监测解决方案
随着电子技术的不断发展以及云计算,物联网(IoT)和5G等通信技术的新突破,数字医疗得到了迅速扩张和采用。生命体征监测(VSM)功能已越来越多地内置于手机、手表和其他智能可穿戴设备中,这些设备能够测量各种生命体征和健康指标,例如体温、心率、呼吸、血氧饱和度(SpO2)、血压和身体成分等,同时由于优秀的功耗控制,更便携的使用体验使得对身体的24小时连续监测成为可能,COVID-19大流行也导致对小型且方便的健康跟踪设备(最好是智能可穿戴设备)的需求达到新高。在小型设备上增加多种检测功能存在...
EEWORLD社区 综合技术交流
Altium 两个工程中的原理图怎么让标号不重覆
如题,我觉得在一个工程中标号和上下板对应太麻烦就分两个工程。那么,想要出生产BOM时,又怕标号重覆,比如:C1上板和C1下板。请问各路高手有什么办法解决么。Altium两个工程中的原理图怎么让标号不重覆不用答了,我找到答案了 既然没有得到满意的答案,自己知道了答案,如果分享给其他迷惑的朋友也是不错的啊很简单,新建一个临时工程,然后将两个工程的schdoc文件都添加进来(不需要将文件复制过去),然后再执行重新编号,编号完了可以删掉临时工程,然后原来的两个工程...
ddllxxrr 综合技术交流