首页 > 器件类别 > 存储 > 存储

M24L48512SA-55BIG

Pseudo Static RAM, 512KX8, 55ns, CMOS, PBGA36, 6 X 8 MM, 1 MM HEIGHT, LEAD FREE, VFBGA-36

器件类别:存储    存储   

厂商名称:台湾晶豪(ESMT)

厂商官网:http://www.esmt.com.tw/

下载文档
器件参数
参数名称
属性值
厂商名称
台湾晶豪(ESMT)
零件包装代码
BGA
包装说明
VFBGA,
针数
36
Reach Compliance Code
unknown
ECCN代码
3A991.B.2.A
最长访问时间
55 ns
JESD-30 代码
R-PBGA-B36
长度
8 mm
内存密度
4194304 bit
内存集成电路类型
PSEUDO STATIC RAM
内存宽度
8
功能数量
1
端子数量
36
字数
524288 words
字数代码
512000
工作模式
ASYNCHRONOUS
最高工作温度
85 °C
最低工作温度
-40 °C
组织
512KX8
封装主体材料
PLASTIC/EPOXY
封装代码
VFBGA
封装形状
RECTANGULAR
封装形式
GRID ARRAY, VERY THIN PROFILE, FINE PITCH
并行/串行
PARALLEL
认证状态
Not Qualified
座面最大高度
1 mm
最大供电电压 (Vsup)
3.6 V
最小供电电压 (Vsup)
2.7 V
标称供电电压 (Vsup)
3 V
表面贴装
YES
技术
CMOS
温度等级
INDUSTRIAL
端子形式
BALL
端子节距
0.75 mm
端子位置
BOTTOM
宽度
6 mm
Base Number Matches
1
文档预览
ESMT
PSRAM
M24L48512SA
4-Mbit (512K x 8)
Pseudo Static RAM
Features
Advanced low power architecture
High speed: 55 ns, 60 ns and 70 ns
Wide voltage range: 2.7V to 3.6V
Typical active current: 1mA @ f = 1 MHz
Low standby power
Automatic power-down when deselected
consumption dramatically when deselected. Writing to the
device is accomplished by taking Chip Enable ( CE ) and Write
Enable (
WE
) inputs LOW. Data on the eight I/O pins (I/O
0
through I/O
7
) is then written into the location specified on the
address pins (A
0
through A
18
).Reading from the device is
accomplished by asserting the Chip Enable ( CE ) and Output
Enable ( OE ) inputs LOW while forcing Write Enable (
WE
)
HIGH . Under these conditions, the contents of the memory
location specified by the address pins will appear on the I/O
pins. The eight input/output pins (I/O
0
through I/O
7
) are placed
in a high-impedance state when the device is deselected ( CE
HIGH), the outputs are disabled ( OE HIGH), or during write
operation ( CE LOW and
WE
LOW). See the Truth Table
for a complete description of read and write modes.
Functional Description
The M24L48512SA is a high-performance CMOS pseudo
static RAM (PSRAM) organized as 512K words by 8 bits. Easy
memory expansion is provided by an active LOW Chip
Enable( CE ) and active LOW Output Enable ( OE ).This device
has an automatic power-down feature that reduces power
Logic Block Diagram
Elite Semiconductor Memory Technology Inc.
Publication Date
:
Jul. 2008
Revision
:
1.1
1/12
ESMT
Pin Configuration[2]
M24L48512SA
Product Portfolio
Power Dissipation
Product
Min.
V
CC
Range(V)
Speed
(ns)
Max.
55
M24L48512SA
2.7
3.0
3.6
60
70
1
5
Operating, I
CC
(mA)
f = 1 MHz
Typ.[3]
Max.
f = f
MAX
Typ.[3]
14
8
Max.
22
15
Standby, I
SB2
(µA)
Typ.[3]
Max.
Typ.
17
40
Notes:
2. NC “no connect”—not connected internally to the die.
3.Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V
CC
= V
CC (typ)
and T
A
= 25°C.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jul. 2008
Revision: 1.1
2/12
ESMT
Maximum Ratings
(Above which the useful life may be impaired. For user
guide-lines, not tested.)
Storage Temperature .................................–65°C to +150°C
Ambient Temperature with
Power Applied ..............................................–55°C to +125°C
Supply Voltage to Ground Potential ................−0.4V to 4.6V
DC Voltage Applied to Outputs
in High-Z State[4, 5, 6] .......................................−0.4V to 3.7V
DC Input Voltage[4, 5, 6] ....................................−0.4V to 3.7V
Output Current into Outputs (LOW) ............................20 mA
Static Discharge Voltage ......................................... > 2001V
(per MIL-STD-883, Method 3015)
M24L48512SA
Latch-up Current ....................................................> 200 mA
Operating Range
Range
Extended
Industrial
Ambient Temperature (T
A
)
−25°C
to +85°C
−40°C
to +85°C
V
CC
2.7V to 3.6V
2.7V to 3.6V
Electrical Characteristics (Over the Operating Range)
Parameter
V
CC
V
OH
V
OL
V
IH
V
IL
I
IX
I
OZ
I
CC
Description
Supply Voltage
Output HIGH
Voltage
Output LOW
Voltage
Input HIGH
Voltage
Input LOW
Voltage
Input Leakage
Current
Output Leakage
Current
V
CC
Operating
Supply Current
Automatic CE
Power-down
Current —CMOS
Inputs
Automatic CE
Power-down
Current —CMOS
Inputs
Test Conditions
Min.
2.7
V
CC
– 0.4
0.4
0.8 * V
CC
-0.4
GND
V
IN
Vcc
GND
V
OUT
Vcc, Output
Disabled
f = f
MAX
= 1/t
RC
f = 1 MHz
V
CC
= 3.6V,
I
OUT
= 0 mA,
CMOS level
-1
-1
14 for 55ns speed
14 for 60 ns speed
8 for 70 ns speed
-55, 60, 70
Typ.[3]
3.0
Max.
3.6
Unit
V
V
V
V
V
µA
µA
mA
I
OH
=
−0.1
mA
I
OL
= 0.1 mA
V
CC
+ 0.4
0.4
+1
+1
22 for 55 ns speed
22 for 60 ns speed
15 for 70 ns speed
1 for all speed
150
5 for all speeds
250
µA
I
SB1
CE
V
CC
0.2V, V
IN
V
CC
0.2V, V
IN
0.2V, f =
f
MAX
(Address and Data Only),
f = 0, V
CC
= 3.6V
CE
V
CC
0.2V, V
IN
V
CC
0.2V or V
IN
0.2V, f = 0, V
CC
= 3.6V
I
SB2
17
40
µA
Capacitance[7]
Parameter
C
IN
C
OUT
Description
Input Capacitance
Output Capacitance
Test Conditions
T
A
= 25°C, f = 1 MHz
V
CC
= V
CC(typ)
Max.
8
8
Unit
pF
pF
Notes:
4.V
IH(MAX)
= V
CC
+ 0.5V for pulse durations less than 20 ns.
5.V
IL(MIN)
= –0.5V for pulse durations less than 20 ns.
6.Overshoot and undershoot specifications are characterized and are not 100% tested.
7.Tested initially and after design or process changes that may affect these parameters.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jul. 2008
Revision: 1.1
3/12
ESMT
Thermal Resistance[7]
Parameter
Description
θ
JA
θ
JC
Thermal Resistance (Junction to Ambient)
Thermal Resistance (Junction to Case)
M24L48512SA
Test Conditions
Test conditions follow standard test
methods and procedures for measuring
thermal impedance, per EIA/JESD51.
VFBGA
55
17
Unit
°C/W
°C/W
AC Test Loads and Waveforms
Parameters
R1
R2
R
TH
V
TH
3.0V V
CC
22000
22000
11000
1.50
Unit
V
Switching Characteristics (Over the Operating Range)[8]
Parameter
Read Cycle
t
RC
t
AA
t
OHA
t
ACE
t
DOE
t
LZOE
t
HZOE
t
LZCE
t
HZCE
[12]
Description
Read Cycle Time
Address to Data Valid
Data Hold from Address Change
CE LOW
OE LOW to Data Valid
OE LOW to Low Z[9, 10]
OE HIGH to High Z[9, 10]
CE LOW
–55
Min.
55
[12]
55
5
55
25
5
25
2
25
0
55
45
45
0
60
45
45
0
2
5
8
Max.
Min.
60
–60
Max.
Min.
70
60
10
60
25
5
25
5
25
0
70
60
55
0
–70
Max.
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
70
70
35
25
25
10
CE HIGH
t
SK
Address Skew
Write Cycle[11]
t
WC
Write Cycle Time
t
SCE
CE LOW
t
AW
t
HA
Address Set-up to Write End
Address Hold from Write End
Notes:
8. Test conditions assume signal transition time of 1 V/ns or higher, timing reference levels of V
CC(typ)
/2, input pulse levels of 0V
to V
CC(typ)
, and output loading of the specified I
OL
/I
OH
and 30-pF load capacitance.
9. t
HZOE
, t
HZCE
, and t
HZWE
transitions are measured when the outputs enter a high-impedance state.
10. High-Z and Low-Z parameters are characterized and are not 100% tested.
11. The internal write time of the memory is defined by the overlap of
WE
, CE = V
IL
. All signals must be ACTIVE to initiate a
write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be
referenced to the edge of the signal that terminates write.
12. To achieve 55-ns performance, the read access should be CE controlled. In this case t
ACE
is the critical parameter and t
SK
is
satisfied when the addresses are stable prior to chip enable going active. For the 70-ns cycle, the addresses must be stable
within 10 ns after the start of the read cycle.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jul. 2008
Revision: 1.1
4/12
ESMT
Switching Characteristics (Over the Operating Range)[8] (continued)
Parameter
t
SA
t
PWE
t
SD
t
HD
t
HZWE
t
LZWE
Description
Address Set-up to Write Start
WE
Pulse Width
Data Set-up to Write End
Data Hold from Write End
WE
LOW to High Z[9, 10]
WE
HIGH to Low Z[9, 10]
M24L48512SA
–55
Min.
0
40
25
0
25
5
5
Max.
Min.
0
40
25
0
–60
Max.
Min.
0
45
25
0
25
5
–70
Max.
Unit
ns
ns
ns
ns
ns
ns
25
Switching Waveforms
Read Cycle 1 (Address Transition Controlled) [12, 13, 14]
Read Cycle 2 (
OE
Controlled) [12, 14]
Notes:
13.Device is continuously selected. OE , CE = V
IL
.
14.
WE
is HIGH for Read Cycle.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jul. 2008
Revision: 1.1
5/12
查看更多>
ST的芯片印刷为什么字是横的,容易害人!
一般芯片,圆点1脚放正了,字也是正的,而ST的字向右倒90度。我一个朋友就吃这个亏了,我认为应该正过来!ST的芯片印刷为什么字是横的,容易害人!哈哈,确实容易害那些有思维定式和不好好看手册想当然的人。ST做了20~30年芯片,这是第一次有人提出这个问题。楼主要确定,一般芯片都是用圆点来识别第一脚的位置的,然后再逆时间计数增加。有点逻辑芯片太小了就会有字来识别第一脚的位置,一般是正向字体的左下方第1PIN,就是芯片的第1脚的位置。...
amyhu stm32/stm8
这个汽车无触点电子闪光器的各个电子元器件的参数是什么?
这个汽车电子无触点电子闪光器的每个电子元器件的参数是什么啊??我照着电路图用电阻电容三极管做了个都不变工作的呢??要怎么做的啊?这个汽车无触点电子闪光器的各个电子元器件的参数是什么?请把这个电路图的说明完整传上来 这不是个好设计,另选一个吧。回复楼主梦梦10的帖子上传了速度帮我研究啊3Q回复沙发dontium的帖子这个汽车无触点电子闪光器的各个电子元器件的参数是什么的???好不容易把计算过程打了一遍,一不小心打的字又没了。大体就是由VT1的导通条件得VT...
梦梦10 汽车电子
MY-IMX6 Linux-3.14 测试手册(Qt版)
1CAN测试1.1测试说明测试之前需要连接CAN的管脚,将CAN1的CAN_L和CAN2的CAN_L连接,将CAN1的CAN_H和CAN2的CAN_H连接。1.2测试方法(1)点击“CAN”图标,启动测试程序(2)点解“Send”,发送数据,如果成功接收到数据,会在右边的文本框显示出来,如下图:如果没有收到数据,则测试失败,请检查CAN的管脚是否短接,错误如下图:(3)测试完成,点击关闭,退出CAN测试。...
明远智睿嵌入式 ARM技术
STM8S已经量产了!我还以为没样品呢,看来信息闭塞啊。
问代理才知道。。STM8S已经量产了!我还以为没样品呢,看来信息闭塞啊。哈哈,要信息灵通,需要多到二姨家串门,多到ST的网站溜溜:产品新闻。早在今年3月,STM8S就开始量产了:意法半导体(ST)全新STM8S问世为8位微控制器的性能、可扩展性和价值树立新标杆。是啊,网站上有很多新闻的,长期不看,肯定就要落后了嗯,我是经常关注上面的新闻的要...
jishengbao stm32/stm8
提问+STM32的硬件I2C应该怎样使用才能保证性能和可靠性还有可维护性
从各种网页学习,也不能得到一个满意的答复。当然,有一些原因:1.首先使用硬件I2C就是为了效率,嵌入式处理性能有限,效率很重要。2.所以使用I2C就要使用中断,否则死等判断标志,效率又丢了3.其次既然如此注重效率,像I2C这样的同步通信,就不希望其中断优先级过高,而希望为非同步通信的中断让步4.官方给出的使用方式太坑爹,还要去判断读写字节数有各自不同的处理过程,没有什么办法统一么?哪怕是优化一点点呢5.当然,注重效率的同时一定要保证可靠,收发几个数据包就挂了,还得复位通信,那肯定是不行...
sjtitr stm32/stm8
[转]RF电路设计中降低寄生信号的八大途径
本帖最后由dontium于2015-1-3100:38编辑 作者:PeteHanish德州仪器应用工程师RF电路板设计最重要的是不该有信号的地方要隔离信号,而该有信号的地方一定要获得信号。这就要求我们有意识地采取措施,确保信号隔离于其路径适当的部位。音调、信号、时钟及其在电路板上任何地方生成的所有谐波都可能作为寄生信号混入输出信号,甚至可能会进入混频器和转换器进而被转换、反映并混淆为寄生信号。传输掩模(Transmitmask)要求表明即便最微小的寄生信号也会阻...
dontium RF/无线