首页 > 器件类别 >

PJP2NA70

700V N-Channel MOSFET

厂商名称:强茂(PANJIT)

厂商官网:http://www.panjit.com.tw/

下载文档
文档预览
PPJU2NA70
/ PJD2NA70 / PJP2NA70 / PJF2NA70
700V N-Channel MOSFET
Voltage
Features
R
DS(ON)
, V
GS
@10V,I
D
@2A<6.5Ω
High switching speed
Improved dv/dt capability
Low Gate Charge
Low reverse transfer capacitance
Lead free in compliance with EU RoHS 2011/65/EU directive.
Green molding compound as per IEC61249 Std.
TO-252
TO-251AB
ITO-220AB-F
TO-220AB
700 V
Current
2A
(Halogen Free)
Mechanical Data
Case : TO-251AB,TO-252 ,TO-220AB, ITO-220AB-F Package
Terminals : Solderable per MIL-STD-750, Method 2026
TO-251AB Approx. Weight : 0.0104 ounces, 0.297grams
TO-252 Approx. Weight : 0.0104 ounces, 0.297grams
TO-220AB Approx. Weight : 0.067 ounces, 2 grams
ITO-220AB-F Approx. Weight : 0.068 ounces, 2 grams
o
Maximum Ratings and Thermal Characteristics
(T
A
=25 C unless otherwise noted)
PARAMETER
Drain-Source Voltage
Gate-Source Voltage
Continuous Drain Current
Pulsed Drain Current
Single Pulse Avalanche Energy
(Note 1)
Power Dissipation
T
C
=25
o
C
Derate above 25
o
C
SYMBOL
V
DS
V
GS
I
D
I
DM
E
AS
P
D
39
0.31
45
0.36
-55~150
TO-251AB
TO-220AB
ITO-220AB-F
TO-252
UNITS
V
V
A
A
mJ
700
+30
2
8
118
28
0.22
39
0.31
W
W/
o
C
o
Operating Junction and
Storage Temperature Range
Typical Thermal resistance
-
-
Junction to Case
Junction to Ambient
T
J
,T
STG
C
R
θJC
R
θJA
3.21
110
2.78
62.5
4.46
120
3.21
110
o
C/W
Limited only By Maximum Junction Temperature
March 10,2014-REV.00
Page 1
PPJU2NA70
/ PJD2NA70 / PJP2NA70 / PJF2NA70
Electrical Characteristics
(T
A
=25 C unless otherwise noted)
PARAMETER
Static
Drain-Source Breakdown Voltage
Gate Threshold Voltage
Drain-Source On-State Resistance
Zero Gate Voltage Drain Current
Gate-Source Leakage Current
Diode Forward Voltage
Dynamic
(Note 4)
Total Gate Charge
Gate-Source Charge
Gate-Drain Charge
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Turn-On Delay Time
Turn-On Rise Time
Turn-Off Delay Time
Turn-Off Fall Time
Drain-Source Diode
Maximum Continuous Drain-Source
Diode Forward Current
Maximum Pulsed Drain-Source
Diode Forward Current
Reverse Recovery Time
Reverse Recovery Charge
I
S
I
SM
trr
Qrr
---
---
V
GS
=0V, I
S
=2A
dI
F
/ dt=100A/us
(Note 2)
-
-
-
-
-
-
369
1.2
2
8
-
-
A
A
ns
uC
Q
g
Q
gs
Q
gd
Ciss
Coss
Crss
td
(on)
t
r
td
(off)
t
f
V
DS
=560V, I
D
=2A,
V
GS
=10V
(Note 2,3)
V
DS
=25V, V
GS
=0V,
f=1.0MHZ
V
DD
=350V, I
D
=2A,
R
G
=25Ω
(Note 2,3)
o
SYMBOL
BV
DSS
V
GS(th)
R
DS(on)
I
DSS
I
GSS
V
SD
TEST CONDITION
V
GS
=0V,I
D
=250uA
V
DS
=V
GS
,I
D
=250uA
V
GS
=10V,I
D
=1A
V
DS
=700V,V
GS
=0V
V
GS
=+30V,V
DS
=0V
I
S
=2A,V
GS
=0V
MIN.
700
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TYP.
-
2.96
5.2
0.01
+10
0.87
7.8
2
4
260
32
1.3
7
21
13
23
MAX.
-
4
6.5
1
+100
1.4
-
-
-
-
-
-
-
-
-
-
UNITS
V
V
Ω
uA
nA
V
nC
pF
ns
NOTES :
1. L=30mH, I
AS
=2.75A, V
DD
=50V, R
G
=25ohm, Starting T
J
=25
o
C
2. Pulse width<300us, Duty cycle<2%
3. Essentially independent of operating temperature typical characteristics.
4. Guaranteed by design, not subject to production testing
March 10,2014-REV.00
Page 2
PPJU2NA70
/ PJD2NA70 / PJP2NA70 / PJF2NA70
TYPICAL CHARACTERISTIC CURVES
Fig.1 Output Characteristics
Fig.2 Transfer Characteristics
Fig.3 On-Resistance vs. Drain Current
Fig.4 On-Resistance vs. Junction Temperature
Fig.5 Capacitance vs. Drain-Source Voltage
Fig.6 Source-Drain Diode Forward Voltage
March 10,2014-REV.00
Page 3
PPJU2NA70
/ PJD2NA70 / PJP2NA70 / PJF2NA70
TYPICAL CHARACTERISTIC CURVES
Fig.7 Gate Charge
Fig.8 BV
DSS
vs. Junction Temperature
Fig.9 Threshold Voltage Variation with Temperature
Fig.10 Maximum Safe Operating Area
Fig.11 Maximum Safe Operating Area
Fig.12 Maximum Safe Operating Area
March 10,2014-REV.00
Page 4
PPJU2NA70
/ PJD2NA70 / PJP2NA70 / PJF2NA70
TYPICAL CHARACTERISTIC CURVES
Fig.13 PJU/PJD Normalized Transient Thermal Impedance vs. Pulse Width
Fig.14 PJP2NA70 Normalized Transient Thermal Impedance vs. Pulse Width
Fig.15 PJF2NA70 Normalized Transient Thermal Impedance vs. Pulse Width
March 10,2014-REV.00
Page 5
查看更多>
局域网故障诊断工具软件支持介绍
局域网故障诊断工具软件支持介绍局域网故障诊断工具软件支持介绍...
mdreamj 嵌入式系统
关于SI24R1与NRF24L01P的PIN对PIN兼容性
si24r1是一颗由南京中科微专为低功耗无线通信应用场合设计的一颗自有知识产权的2.4GRF芯片。目前主要针对低功耗的校讯通、2.4G停车场、智能家居、无线音频等领域。当然,这颗芯片进入大众的视野是与nordic的NRF24L01P芯片兼容通信。从而被打上了国产NRF24L01P的标签,更有甚者居然磨掉芯片原本的SI24R1的LOGO打成NRF24L01P,给很多客户产生了很多不必要的损失。大家定向的理解,国产的东西总是会比国外进口的相差到哪里哪里,如此云云。其实,在很多客户在...
Jacktang 无线连接
利用430f169和外接adc怎么采样电流
电压采样有控制位设置,电流采样的程序是怎样的呢利用430f169和外接adc怎么采样电流电流转换成电压采样...
夜深月微凉 单片机
STM32嵌入式开发,米尔STM32MP135核心板助力充电桩发展
随着电动车的普及和人们环保意识的增强,充电桩作为电动车充电设备的重要一环,充电桩行业正迅速发展,消费市场的大量应用也造就市场的需求量不断增长。因此,产品的功能、可靠性、安全性等要求也变得尤为重要,而采用传统单片机产品并不能满足充电桩的智能控制等需求,本文将详细介绍基于米尔STM32MP135核心板的充电桩应用方案。图1:充电方案图采用STM32MP135系列微处理器进行电动汽车的智能嵌入式充电桩设计,并通过指挥8位和16位微控制器实现复杂功能的智能控制。在智能充电桩的应用里,...
blingbling111 Linux与安卓
大量使用逻辑导致无法高速通信
请教各位大神:我用的EP3C55对外接口是用的TTL转LVDS内部是TTL出去的外部时钟是160M速率我原本有几个不同模式的FPGA程序,但为了方便管理我将这几个程序合到一个程序后就发现高速就通信不了但把时钟降速后可以正常通信这程序里逻辑用了很多,RAM到是用得少,我后面加了时钟约束后依然没有效果,在这想请教各位大神有没有一些思路帮帮我。 大量使用逻辑导致无法高速通信逻辑设计得有问题吧增加流水线长度模块合并后布线会改变也就会改变速度可能是我没...
chenbinwy FPGA/CPLD
[分享][转帖]用GNU工具编译二进制文件
不久前尝试用gnu的工具编译二进制文件,以便在arm开发板上直接运行编写的C或汇编“裸”代码,而不跑操作系统。做了个实验,学到一点点东西,欢迎拍砖。我是在sitsang板上做的实验,并且用了redboot作为bootloader,使用bootloader主要是因为下载方便,不要老是擦写flash,而且也可以学习一些工具如ld等的用法我采用的代码是linux内核里面的vsprintf.c文件的代码,在文件最后加了一点程序,这个文件是printk内部实现的主函数,可以参看源代码////...
duandi 嵌入式系统