首页 > 器件类别 > 模拟混合信号IC > 电压比较器

SGM8740YN5G/TR

器件类别:模拟混合信号IC    电压比较器   

厂商名称:圣邦微电子(SGMICRO)

厂商官网:http://www.sg-micro.com/

下载文档
文档预览
SGM8740
45ns, Low-Power, 3V/5V, Rail-to-Rail
Input
Single-Supply Comparator
GENERAL DESCRIPTION
The SGM8740 is a single high-speed comparator
optimized for systems powered from a 3V or 5V supply.
The device features high-speed response, low-power
consumption, and rail-to-rail input range. Propagation
delay is 45ns, while supply current is only 155µA.
The input common mode range of the SGM8740 extends
beyond both power supply rails. The output pulls to within
0.1V of either supply rail without external pull-up circuitry,
making the device ideal for interface with both CMOS and
TTL logics. All input and output pins can tolerate a
continuous short-circuit fault condition to either rail.
Internal hysteresis ensures clean output switching, even
with slow-moving input signals.
The SGM8740 is available in Green SOT-23-5 and
SC70-5 packages. It is rated over the -40℃ to +85℃
temperature range.
Line Receivers
Battery-Powered Systems
Threshold Detectors/Discriminators
3V/5V Systems
Zero-Crossing Detectors
Sampling Circuits
FEATURES
Fast, 45ns Propagation Delay (10mV Overdrive)
Low Power Consumption:
155μA (TYP) at V
S
= 3V
Wide Supply Voltage Range: 2.7V to 5.5V
Optimized for 3V and 5V Applications
Rail-to-Rail Input Voltage Range
Low Offset Voltage: 0.9mV (TYP)
Internal Hysteresis for Clean Switching
Output Swing to within 200mV from Rails with
4mA Output Current
CMOS/TTL-Compatible Output
-40℃ to +85℃ Operating Temperature Range
Available in Green SOT-23-5 and SC70-5 Packages
APPLICATIONS
SG Micro Corp
www.sg-micro.com
REV. A
SGM8740
45ns, Low-Power, 3V/5V, Rail-to-Rail
Input Single-Supply Comparator
PACKAGE/ORDERING INFORMATION
MODEL
PACKAGE
DESCRIPTION
SOT-23-5
SC70-5
SPECIFIED
TEMPERATURE
RANGE
-40℃ to +85℃
-40℃ to +85℃
ORDERING
NUMBER
SGM8740YN5G/TR
SGM8740YC5G/TR
PACKAGE
MARKING
SL5XX
SK7XX
PACKING
OPTION
Tape and Reel, 3000
Tape and Reel, 3000
SGM8740
NOTE:
XX
= Date Code.
MARKING INFORMATION
SYY X X
Date code - Month ("A" = Jan. "B" = Feb.
"L" = Dec.)
Date code - Year ("A" = 2010, "B" = 2011
…)
Chip I.D.
For example: SL5AA (2010, January)
ABSOLUTE MAXIMUM RATINGS
Supply Voltage, +V
S
to -V
S
.................................................... 6V
V
IN
Differential................................................................... ±2.5V
Voltage at Input/Output pins ............(-V
S
) - 0.3V to (+V
S
) + 0.3V
Operating Temperature Range ........................... -40℃ to +85℃
Junction Temperature .......................................................150℃
Storage Temperature Range ............................ -65℃ to +150℃
Lead Temperature (Soldering, 10s) ..................................260℃
ESD Susceptibility
HBM................................................................................. 6000V
MM..................................................................................... 400V
NOTE:
Stresses beyond those listed under “Absolute Maximum
Ratings” may cause permanent damage to the device. These
are stress ratings only, and functional operation of the device at
these or any other conditions beyond those indicated in the
operational sections of the specifications is not implied.
Exposure to absolute maximum rating conditions for extended
periods may affect device reliability.
CAUTION
This integrated circuit can be damaged by ESD if you don’t pay
attention to ESD protection. SGMICRO recommends that all
integrated circuits be handled with appropriate precautions.
Failure to observe proper handling and installation procedures
can cause damage. ESD damage can range from subtle
performance degradation to complete device failure. Precision
integrated circuits may be more susceptible to damage because
very small parametric changes could cause the device not to
meet its published specifications.
SGMICRO reserves the right to make any change in circuit
design, specification or other related things if necessary without
notice at any time. Please contact SGMICRO sales office to get
the latest datasheet.
PIN CONFIGURATIONS
(TOP VIEW)
SGM8740
OUT
1
5
+V
S
-V
S
2
IN+
3
4
IN-
SOT-23-5/SC70-5
SG Micro Corp
www.sg-micro.com
2
SGM8740
45ns, Low-Power, 3V/5V, Rail-to-Rail
Input Single-Supply Comparator
ELECTRICAL CHARACTERISTICS
(V
S
= 5V, V
CM
= 0V, C
L
= 15pF, T
A
= +25℃, unless otherwise noted.)
PARAMETER
Operating Supply Voltage
(1)
(2)
SYMBOL
V
S
V
CM
V
OS
V
HYST
I
SOURCE
CONDITIONS
MIN
2.7
-0.1
TYP
MAX
5.5
V
S
+ 0.1
UNITS
V
V
mV
mV
Input Common Mode Voltage Range
Input Offset Voltage
Input Hysteresis
(4)
(3)
V
S
= 5V, V
CM
= 0V
-40℃
T
A
+85℃
V
S
= 5V, V
CM
= 0V
V
S
= 5V, Out to V
S
/2
-40℃
T
A
+85℃
V
S
= 5V, Out to V
S
/2
-40℃
T
A
+85℃
V
S
= 5V, V
CM
= 0V to 5V
-40℃
T
A
+85℃
V
CM
= 0V, V
S
= 2.7V to 5.5V
-40℃
T
A
+85℃
V
S
= 5V, I
O
= 4mA
-40℃
T
A
+85℃
V
S
= 5V, I
O
= -4mA
-40℃
T
A
+85℃
V
S
= 3V, I
O
= 0
60
54
59
55
21
17
0.9
5
5.8
2.8
33
Output Short-Circuit Current
I
SINK
(5)
-32
-20
-15
mA
Common Mode Rejection Ratio
CMRR
78
dB
Power Supply Rejection Ratio
PSRR
77
dB
450
480
mV
V
OH
Output Voltage Swing from Rail
V
OL
198
180
231
258
155
215
250
µA
Supply Current
I
S
-40℃
T
A
+85℃
V
S
= 5V, I
O
= 0
-40℃
T
A
+85℃
164
230
270
Propagation Delay (High to Low)
V
S
= 3V, Overdrive = 10mV
V
S
= 3V, Overdrive = 100mV
V
S
= 3V, Overdrive = 10mV
V
S
= 3V, Overdrive = 100mV
t
RISE
V
S
= 3V, Overdrive = 10mV
V
S
= 3V, Overdrive = 100mV
V
S
= 3V, Overdrive = 10mV
V
S
= 3V, Overdrive = 100mV
45
20
35
25
9
8
8
5
ns
Propagation Delay (Low to High)
ns
Rise Time
ns
Fall Time
t
FALL
ns
NOTES:
1. Inferred from PSRR test.
2. Inferred from PD test. Note also that either or both inputs can be driven to the absolute maximum limit (0.1V beyond either supply
rail) without damage or false output inversion.
3. V
OS
is defined as the center of the input-referred hysteresis zone. See Figure 1.
4. The input-referred trip points are the extremities of the differential input voltage required to make the comparator output change
state. The difference between the upper and lower trip points is equal to the width of the input-referred hysteresis zone. See Figure 1.
5. Specified over the full input common mode voltage range (V
CM
).
SG Micro Corp
www.sg-micro.com
3
SGM8740
45ns, Low-Power, 3V/5V, Rail-to-Rail
Input Single-Supply Comparator
TYPICAL PERFORMANCE CHARACTERISTICS
Supply Current vs. Temperature
250
200
150
100
50
0
-50
-25
0
25
50
Temperature (℃)
75
100
Time (50ns/div)
Sinusoid Response at 4MHz
V
S
= 3V
V
CM
= 0V
V
IN
100mV/div
Supply Current (μA)
V
S
= 5V
V
S
= 3V
1V/div
V
OUT
Output Low Voltage vs. Temperature
300
Output Low Voltage (mV)
250
200
150
100
50
0
-50
-25
0
25
50
Temperature (℃)
75
100
I
SINK
= 4mA
V
S
= 3V
Output High Voltage (mV)
420
350
280
210
140
70
0
-50
Output High Voltage vs. Temperature
V
S
= 3V
V
S
= 5V
V
S
= 5V
I
SOURCE
= 4mA
-25
0
25
50
Temperature (℃)
75
100
Output Short-Circuit (Sink) Current (mA)
0
-10
-20
-30
-40
-50
-60
-50
-25
0
25
50
Temperature (℃)
75
100
V
S
= 5V
V
S
= 3V
Output Short-Circuit (Source) Current (mA)
Output Short-Circuit (Sink) Current vs. Temperature
Output Short-Circuit (Source) Current vs. Temperature
60
50
40
30
20
10
0
-50
V
S
= 3V
-25
0
25
50
Temperature (℃)
75
100
V
S
= 5V
SG Micro Corp
www.sg-micro.com
4
SGM8740
45ns, Low-Power, 3V/5V, Rail-to-Rail
Input Single-Supply Comparator
TYPICAL PERFORMANCE CHARACTERISTICS
Propagation Delay vs. Input Overdrive
45
Propagation Delay (ns)
40
35
30
25
20
15
0
40
80
120
160
Input Overdrive (mV)
200
H-L
Propagation Delay vs. Capacitive Load
45
Propagation Delay (ns)
V
S
= 3V, V
CM
= 0V
R
L
= 10kΩ, V
OD
= 100mV
V
S
= 3V, V
CM
= 0V
R
L
= 10kΩ, C
L
= 18pF
40
35
30
25
20
15
0
L-H
H-L
L-H
30
60
90
120
Capacitive Load (pF)
150
180
Propagation Delay (L-H)
V
OD
= 10mV, V
CM
= 0V
100mV/div
0V
V
IN
Propagation Delay (L-H)
V
OD
= 100mV, V
CM
= 0V
100mV/div
0V
V
IN
1V/div
1V/div
V
OUT
0V
Time (10ns/div)
V
OUT
0V
Time (10ns/div)
Propagation Delay (H-L)
V
OD
= 10mV, V
CM
= 0V
V
IN
0V
V
IN
0V
Propagation Delay (H-L)
V
OD
= 100mV, V
CM
= 0V
100mV/div
100mV/div
V
OUT
1V/div
V
OUT
1V/div
0V
Time (10ns/div)
0V
Time (10ns/div)
SG Micro Corp
www.sg-micro.com
5
查看更多>
识别色环电阻的阻值...
识别色环电阻的阻值电阻阻值有直接编号和色环法,直接编号我不说你也知道,下面主要介绍色环电阻的识别目前,电子产品广泛采用色环电阻,其优点是在装配、调试和修理过程中,不用拨动元件,即可在任意角度看清色环,读出阻值,使用方便。一个电阻色环由4部分组成四个色环的其中第一、二环分别代表阻值的前两位数;第三环代表倍率;第四环代表误差。下面介绍掌握此方法的几个要点:(1)熟记第一、二环每种颜色所代表的数。可这样记忆:棕=1红=2,橙=3,黄=4,绿=5,蓝=6,紫=7,灰=8...
emaily 模拟电子
AD637RMS-DC转换问题
采用AD637对交流信号进行直流转换:1、当输入信号为信号源时,频率10.6kHz,幅值大约4.5Vpp,电路设计采取数据手册上的figure5,标准的转换电路,其中Cav采取10uf电容,进行转换时,发现输出的直流电压波形利用示波器看没有太多的交流分量,很平直,如下图所示:2、当改变输入信号源时,输入的正弦信号来自于一个能产生10.6KHz的交变磁场的螺线管上绕制的感应线圈,其所产生的感应电压,该感应电压频率也是10.6Khz,幅值大约4.7Vpp,开始采用datashee...
yunmeizhi1990 模拟电子
标号为501 852 8脚贴装芯片是什么
目前在抄一块板子,不知道这个芯片是什么网上查不到。请问各位有经验的人这个是啥?还有一个12脚贴片的方形芯片型号为BSV8CKA15F 标号为5018528脚贴装芯片是什么...
5137796 模拟电子
想请教一个问题,基于电流反馈运放的函数发生器,电流反馈具体应该体现在哪里呢
初学模电,不是太了解,想请教一下想请教一个问题,基于电流反馈运放的函数发生器,电流反馈具体应该体现在哪里呢...
qq7347 模拟电子
A/D转换经验谈
ADC转换的一般过程61、采样和保持62、量化和编码7ADC的分类71.并行比较型82.串并行型93.逐次比较型94.积分型115.V-F型126.∑-△调制型13ADC的主要技术参数141.转换精度(DC特性)14分辨率(Resolution)和量化误差(QuantizationError)14转换精度(ConversionAccuracy)15无调整综合误差(UnadjustedIntegralError)15共模抑制比(...
simonprince 模拟电子
有知道“水饺”的ID吗?或者是他的贴子链接也可以吆!
有知道“水饺”的ID吗?或者是他的贴子链接也可以吆!有知道“水饺”的ID吗?或者是他的贴子链接也可以吆!你找他干嘛啊? 有一个技术上的问题,想请教一下他吆!额。。。。找我怎么了。。。 饺子你出名了……{:1_103:}哪个饺子?“人肉”饺子 我叫他来找你了。跟帖的就是。自己问吧 嗯!好的,谢了吆! 饺神终于露面了...
天鹏 模拟电子