首页 > 器件类别 > 分立半导体

WPM3401

WPM3401 场效应晶体管

器件类别:分立半导体   

厂商名称:韦尔(WILLSEMI)

厂商官网:http://www.willsemi.com/

下载文档
文档预览
WPM3401
WPM3401
P-Channel Enhancement Mode MOSFET
www.willsemi.com
Description
The WPM3401 is the P-Channel logic enhancement mode
power field effect transistors are produced using high cell
density, DMOS trench technology.
This high density process is especially tailored to minimize
on-state resistance. These devices are particularly suited for low
voltage application, notebook computer power management and
other battery powered circuits where high-side switching.
Features
-30V/-4.3A,RDS(ON)
<
53m @VGS= -10V
-30V/-3.4A,RDS(ON)
<
56m @VGS=-4.5V
Super high density cell design for extremely low RDS (ON)
Exceptional on-resistance and maximum DC current
capability
SOT23-3 package design
P−Channel MOSFET
G
1
3
D
S
2
Top View
Application
Power Management in Note book
Portable Equipment
Battery Powered System
DC/DC Converter
Load Switch
G
1
Gate
Drain
3
WP1U
2
Source
U
= Date Code
WP1
= Specific Device Code
Order information
Part Number
WPM3401-3/TR
Package
SOT23-3
Shipping
3000
Tape&Reel
http://www.willsemi.com
Page 1
0
Oct, 2012 Rev 2.2
Parameter
WPM3401
Absolute Maximum Ratings
(TA=25
Parameter
Parameter
V
DS
V
GS
I
D
I
DM
P
D
T
J
Tstg
R
JA
unless otherwise specified)
Symbol
l
Drain-Source voltage
Gate-Source Voltage
Continuous Drain Steady-State
TA=25
Current
Steady-State
TA=70
Pulse Drain Current
Power Dissipation
TA=25
TA=70
Operating Junction Temperature Range
Storage Temperature Range
Thermal Resistance-Junction to Ambient
Value
-30
±12
-4.6
-3.6
-20
1.3
0.8
-55~150
95
Unit
V
V
A
A
W
/W
Electrical Characteristics
(T
A
=25
Unless otherwise noted)
Parameter
Static
Drain-Source Breakdown Voltage
Gate Threshold Voltage
Gate Leakage Current
Zero Gate Voltage Drain Current
On State Drain Current (Pulse)
Drain-Source On-Resistance
Forward Transconductance
Diode Forward Voltage
Dynamic
Total Gate Charge
Gate-Source Charge
Gate-Drain Charge
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Turn-On Time
Turn-Off Time
http://www.willsemi.com
Symbol
Conditions
Min.
Typ
Max.
Unit
V
(BR)DSS
V
GS
=0V,I
D
=-250uA
V
GS(th)
V
DS
=V
GS
,I
D
=-250uA
I
GSS
I
DSS
V
DS
=0V,V
GS
=±12V
V
DS
=-24V,V
GS
=0V
V
DS
=-24V,V
GS
=0V
T
J
=85
V
DS
= -5V,V
GS
=-4.5V
V
GS
=-10V,I
D
=-4.3A
V
GS
=-4.5V,I
D
=-3.5A
V
DS
=-15V,I
D
=-4.3A
I
S
= -1.0A,V
GS
=0V
-30
-0.5
-1.0
-1.5
±100
-1
-5
-10
0.038
0.043
13
-0.75
0.053
0.056
V
nA
uA
A
I
D(on)
R
DS(on)
gfs
V
SD
S
-1.5
V
Q
g
Q
gs
Q
gd
C
iss
C
oss
C
rss
t
d(on)
t
r
t
d(off)
t
f
Page 2
27
V
DS
=-15V,V
GS
=-10V
I
D
= -4.3A
1.7
5
1250
V
DS
=-15V,V
GS
=0V
f=1MHz
106
90
10
V
DD
=-15V,R
L
=15
I
D
-1.0A,V
GEN
=-10V
R
G
=6
18
60
9
0
Oct, 2012 Rev 2.2
nC
pF
nS
WPM3401
Typical Performance Characteristis
24
V
GS
=10V
20
120
I
D
,Drain Current(A)
V
GS
=6V
16
12
8
V
GS
=3V
4
0
V
GS
=4V
R
DS(ON)
ON Resistance(mOhm)
100
80
V
GS
=4.5V
60
40
V
GS
=10V
20
0
5
0
V
DS
,Drain-Source voltage(V)
1
2
3
4
5
I
D
, Drain Current(A)
10
15
20
Drain Current VS Drain-Source voltage
Drain Current vs ON Resistance
0.11
25
V
DS
=2V
R
DS(ON)
ON Resistance(Ohm)
0.09
I
D
,Drain Current(A)
I
D
=4.3A
20
0.07
15
10
0.05
5
0.03
0
0
V
GS
,Gate-Source Voltage(V)
2
4
6
8
10
0
1
V
GS
,Gate-Source Voltage(V)
2
3
4
5
6
Gate-Source Voltage vs ON Resistance
1.5
Drain Current VS Gate-Source Voltage
1.6
Normalized On-Resistance
IS, Source-Drain Current(A)
1.2
1.4
V
GS
=-10V
V
GS
=-4.5V
0.9
1.2
0.6
0.3
1
I
D
=-5A
0.0
0.0
0.8
V
DS
,Drain-Source voltage(V)
0.2
0.4
0.6
0.8
0
25
50
75
100
125
150
175
Temperature (°C)
Drain Current VS Source-Drain Current
http://www.willsemi.com
Page 3
On-Resistance vs. Junction
0
Oct, 2012 Rev 2.2
WPM3401
12
10
8
6
4
2
0
V
DS
=-15V, V
GS
=-10V,I
D
=-4.3A
2000
f=1MHZ
Ciss
Coss
Crss
-V
GS
-Gate Source Voltage (V)
1600
C-Capacitance(pf)
0
5
10
15
20
Q
g
(nc)
25
30
35
40
1200
800
400
0
0
3
6
9
12
15
-V
DS
-Drain to Source Voltage(V)
Gate-Charge Characteristics
100
T
J(Max)
=150°C
T
A
=25°C
10 s
Power (W)
-I
D
(Amps)
10
R
DS(ON)
limited
0.1s
1
100 s
1ms
10ms
1s
10s
DC
0.1
0.1
1
-V
DS
(Volts)
10
100
0
0.001
30
40
Capacitance Characteristics
T
J(Max)
=150°C
T
A
=25°C
20
10
0.01
0.1
1
10
100
1000
Pulse Width (s)
Maximum Forward Biased Safe
Operating Area (Note E)
10
Normalized Transient
Thermal Resistance
Single Pulse Power Rating Junction-to-
Ambient (Note E)
D=T
on
/T
T
J,PK
=T
A
+P
DM
.Z
R
JA
=70°C/W
JA
.R
JA
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
1
0.1
P
D
T
on
Single Pulse
JA
T
Z
0.01
0.00001
0.0001
0.001
0.01
0.1
1
10
100
1000
Pulse Width (s)
Normalized Maximum Transient Thermal Impedance
http://www.willsemi.com
Page 4
0
Oct, 2012 Rev 2.2
WPM3401
Avalanche Energy (Single pulsed) Test Circuit & Waveforms
E
AS
=1/2 L*I
AR2
http://www.willsemi.com
Page
5
0
Oct, 2012 Rev 2.2
查看更多>
北斗二代定位系统
卫星导航接收机:对于北斗B3频点现在最好的定位精度能到多少,军用的可能会更好一些,说是能实现精度2.5米的定位北斗二代定位系统追求“最好”没有意义,该关注的是“一般条件下”,以及“最劣情况下”。...
xxhhzz 综合技术交流
TI DLP技术的工业应用与创新视频——深入介绍DLP工业应用, 解读DLP创新,敬请观看!
TIDLP技术的工业应用与创新视频——深入介绍DLP工业应用,解读DLP创新,敬请观看!点击观看视频TIDLP技术的工业应用与创新视频——深入介绍DLP工业应用,解读DLP创新,敬请观看!去看看:pleased:...
EEWORLD社区 综合技术交流
05.26【每日一问】对于死循环,你最喜欢那种?
对于死循环对于我们编写裸机程序来说应该是最常见的了吧,那么我们来共同讨论一下关于死循环的问题吧。就用C语言,不用汇编语言,说最常用的死循环语句。一般就4种,goto;for(;;);while(1);do{}while(true);但是我想知道这四种在编译器处理的时候有什么区别?那个效率最高?那个效率最低?各有什么优缺点?05.26【每日一问】对于死循环,你最喜欢那种?haha哈哈用的最多的是while但是不知道有什么区别坐着听课我看外国人的程序他们都喜...
wanghongyang 综合技术交流
求问有做室内定位首先要做啥
想做D2D+ZIGBEE的室内定位,算法如何实现呢,应该做啥呢求问有做室内定位首先要做啥两个思路,一是布设大量测距节点,每个节点都有自己的ID,位置固定且预知,其辐射覆盖一定范围,并由多个节点覆盖整个测距区域。在上述区域内,一个接收机可以收到多个测距节点的信号,根据实现知道的节点位置,再结合多点的圆周交点即可获知接收机的位置。本法的优点是定位精确,但需要较多定位节点,成本高。另一个思路是场强法。同样事先知道测距节点的位置,然后根据接收机接收到的节点发射机的信号场强,即可知道离测距节点的距...
xiaohua233 综合技术交流